Skip to main content
Log in

A hybrid brick element with rotational degrees of freedom

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An 8-node brick element using Allman's displacement interpolation is proposed. The optimal number of 36 stress modes is identified. The six equal-rotation strainless modes which are intrinsic to Allman's interpolation are stabilized by using a penalty method. The penalty also enforces the equality of the nodal rotation and the continuum-defined rotation. To enhance computational efficiency, 39 stress modes are initially assumed, three constraints on the stress field are then imposed. The flexibility matrix is simplified, such that only four symmetric 3 × 3 matrices are required to be inverted. Numerical test results are presented, showing good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri, S. N. (1979): On rate principles for finite strain analysis of elastic and nonelastic solids. Recent Research of Mechanical Behaviour of Solids, 79–107 (Professor H. Miyamoto's Anniversary Volume), University of Tokyo Press

  • Atluri, S. N. (1980): On some new general and complementary energy principles for the rate problems of finite strain, classic plasticity. J. Struct. Mech. 8, 61–92

    Google Scholar 

  • Allman, D. J. (1984): A compatible triangular element including vertex rotations for plane elasticity analysis, Comp. and Struct. 19, 1–8

    Google Scholar 

  • Bergan, P. G.; Felippa, C. A. (1985): A triangular membrane element with rotational degrees of freedom. Comp. Meth. Appl. Mech. Engng. 50, 25–69

    Google Scholar 

  • Cook, R. D. (1986): On the Allman triangle and a related quadrilateral element. Comp. and Struct. 22, 1065–1067

    Google Scholar 

  • Cook, R. D.; Malkus, D. S.; Plesha, M. E. (1989): Concepts and applications of finite element analysis, 3rd edn. John Wiley & Sons

  • Hughes, T. J. R.; Brezzi, F. (1989): On drilling degrees of freedom. Comp. Meth. Appl. Mech. Engng. 72, 105–121

    Google Scholar 

  • Ibrahimbegovic, A.; Wilson, E. L. (1991): Thick shell and solid finite elements with independent rotation fields. Int. J. Num. Meth. Engng. 31, 1393–1414

    Google Scholar 

  • Irons, B. M. (1971): Quadrature rules for brick based finite elements. Int. J. Num. Meth. Engng. 3, 293–294 (1971)

    Google Scholar 

  • Irons, B. M.; Ahmad, S. (1980): Techniques of finite elements, Ellis Horwood

  • Iura, M.; Atluri, S. N. (1992): Formulation of a membrane finite element with drilling degrees of freedom. Comput. Mech. 9, 412–428

    Google Scholar 

  • MacNeal, R. H.; Harder, R. L. (1985): A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design 1, 3–20

    Google Scholar 

  • MacNeal, R. H.; Harder, R. L. (1989): A refined four-noded membrane element with rotational degrees of freedom. Comp. and Struct. 28, 75–84

    Google Scholar 

  • Pawlak, T. P.; Yunus, S. M.; Cook, R. D. (1991): Solid elements with rotational degrees of freedom: part II—tetrahedron elements. Int. J. Num. Meth. Engng. 31, 539–610

    Google Scholar 

  • Pian, T. H. H.; Tong, P. (1969): Basis of finite element methods for solid continua. Int. J. Num. Meth. Engng. 1, 3–28

    Google Scholar 

  • Pian, T. H. H.; Chen, D.-P.; Kang, D. (1983): A new formulation of hybrid/mixed finite element methods. Comp. and Struct. 16, 81–87

    Google Scholar 

  • Pian, T. H. H.; Chen, D.-P. (1983): On the suppression of zero energy deformation modes. Int. J. Num. Meth. Engng. 19, 1741–1752

    Google Scholar 

  • Pian, T. H. H.; Sumihara, K. (1984): Rational approach for assumed stress finite elements. Int. J. Num. Meth. Engng. 20, 1685–1695

    Google Scholar 

  • Punch, E. F.; Atluri, S. N. (1984): Applications of isoparametric three-dimensional hybrid-stress finite elements with least-order stress fields. Comp. and Struct. 19, 409–430

    Google Scholar 

  • Reissner, E. (1986): Some aspects of the variational principles problem in elasticity. Comput. Mech. 1, 3–9

    Google Scholar 

  • Rubinstein, R.; Punch, E. F.; Atluri, S. N. (1983): An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable invariant stress fields. Comp. Meth. Appl. Mech. Engng. 38, 63–92

    Google Scholar 

  • Sze, K. Y.; Chow, C. L. (1991a): An incompatible element for axisymmetric structure and its modification by hybrid method. Int. J. Num. Meth. Engng. 31, 385–405

    Google Scholar 

  • Sze, K. Y.; Chow, C. L. (1991b): An efficient hybrid quadrilateral Kirchhoff plate bending element. Int. J. Num. Meth. Engng. 32, 149–169

    Google Scholar 

  • Sze, K. Y. (1992): Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation. Int. J. Num. Meth. Engng. 35, 1–20

    Google Scholar 

  • Sze, K. Y.; Chow, C. L.; Chen, W.-J. (1992): On invariance of isoparametric hybrid elements. Commun. Appl. Num. Meth. 8, 385–406

    Google Scholar 

  • Sze, K. Y.; Chen, W.-J.; Cheung, Y. K. (1992): An efficient quadrilateral plane element with drilling degrees of freedom using orthogonal stress modes. Comp. and Struct. 42, 695–705

    Google Scholar 

  • Sze, K. Y.; Ghali, A. (1992): Hybrid plane quadrilateral element with corner rotations. ASCE—J. Struct. Engng., accepted for publication.

  • Taylor, R. L.; Simo, J. C.; Zienkiewicz, O. C.; Chan, C. H. (1986): The patch test—a condition for assessing fem convergence. Int. J. Num. Meth. Engng. 22, 39–62

    Google Scholar 

  • Timoshenko, S. P.; Woinowsky-Krieger, S. (1970): Theory of plates and shells, 2nd edn. McGraw-Hill

  • Yunus, S. M.; Saigal, S., Cook, R. D. (1989). On improved hybrid finite elements with rotational degrees of freedom. Int. J. Num. Meth. Engng. 28, 785–800

    Google Scholar 

  • Yunus, S. M.; Pawlak, T. P.; Cook, R. D. (1991): Solid elements with rotational degrees of freedom: part 1—hexahedron elements. Int. J. Num. Meth. Engng. 31, 573–592

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, September 12, 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sze, K.Y., Ghali, A. A hybrid brick element with rotational degrees of freedom. Computational Mechanics 12, 147–163 (1993). https://doi.org/10.1007/BF00371990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371990

Keywords

Navigation