Skip to main content
Log in

Fluid regimes in the deformation of the Helvetic nappes, Switzerland, as inferred from stable isotope data

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The stable isotope composition of veins, pressure shadows, mylonites and fault breccias in allochthonous Mesozoic carbonate cover units of the Helvetic zone show evidence for concurrent closed and open system of fluid advection at different scales in the tectonic development of the Swiss Alps. Marine carbonates are isotopically uniform, independent of metamorphic grade, where δ 13C=1.5±1.5 (1 σ) and δ 18O=25.4±2.2 (1 σ). Total variations of up to 2‰ in δ 13C and 1.5‰ in δ 18O occur over a cm scale. Calcite in pre- (Type I) and syntectonic (Type II) vein arrays and pressure shadows are mostly in close isotopic compliance with the matrix calcite, to within ±0.5‰, signifying isotopic buffering of pore fluids by host rocks during deformation, and closed system redistribution of carbonate over a cm to m scale. This is consistent with microstructural evidence for pressure solution — precipitation deformation.

Type III post-tectonic veins occur throughout 5 km of structural section, extend several km to the basement, and accommodate up to 15% extension. Whereas the main population of Type III veins is isotopically undistinguishable from matrix carbonates, calcite in the largest of these veins is depleted in 18O by up to 23‰ but acquired comparable δ 13C values. This generation of veins involved geopressurized hydrothermal fluids at 200 to 350° C where δ 18O H2O=−8 to +20‰, representing variable mixtures of 18O enriched pore and metamorphic fluids, with 18O depleted meteoric water. Calc-mylonites (δ 18O=25 to 11‰) at the base of the Helvetic units, and syntectonic veins from the frontal Pennine thrust are characterized by a trend of 18O depletion relative to carbonate protoliths, due to exchange with an isotopically variable reservoir (δ 18O H2O=20 to 4‰). The upper limiting value corresponds to carbonate-buffered pore fluid, whereas the lower value is interpreted as 18O-depleted formation brines tectonically expelled at lithostatic pressure from the crystalline basement. Carbonate breccias in one of the large scale late normal faults exchanged with infiltrating 18O-depleted meteoric surface waters (δ 18O=−8 to −10‰).

During the main ductile Alpine deformation, individual lithological units and associated tectonic vein arrays behaved as closed systems, whereas mylonites along thrust faults acted as conduits for tectonically expelled lithostatically pressured reservoirs driven over tens of km. At the latest stages, marked by 5 to 15 km uplift and brittle deformation, low 18O meteoric surface waters penetrated to depths of several km under hydrostatic gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baertschi P (1957) Messung und Deutung relativer Häufigkeitsvariationen von 18O und 13C in Karbonatgesteinen und Mineralien. Schweiz Mineral Petrogr Mitt 37:73–152

    Google Scholar 

  • Burkhard M (1986) La déformation des calcaires de l'Helvétique de la Suisse occidentale (Phénomènes, mécanismes et interprétations tectoniques). Revue Géol dyn Géogr phys 27/5:281–301

    Google Scholar 

  • Burkhard M (1988) L'Helvétique de la bordure occidentale du massif de l'Aar (Evolution tectonique et métamorphique). Eclogae Geol Helv 81/1:63–114

    Google Scholar 

  • Cathles LM (1983) An analysis of the hydrothermal system responsible for massive sulfide deposition in the Hokuroku Basin of Japan. Econ Geol Mono 5:439–487

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochin Acta 27:43–52

    Google Scholar 

  • Clayton RN, Friedman I, Graf DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation waters: I isotopic composition. J Geophys Res 71:3869–3882

    Google Scholar 

  • Clayton RN, O'Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    Google Scholar 

  • Dietrich D, Mc Kenzie JA, Song H (1983) Origin of calcite in syntectonic veins as determined from carbon isotope ratios. Geology 11/9:547–551

    Google Scholar 

  • Durney DW (1972) Deformation history of the Western Helvetic nappes. Ph.D.thesis, Imperial College, London, p 327

    Google Scholar 

  • Durney DW, Ramsay JG (1974) Incremental strains measured by syntectonic crystal growths. In: DeJong KA, Scholten R (eds) Gravity and tectonics. Wiley, New York pp 67–91

    Google Scholar 

  • Etheridge MA (1983) Differential stress magnitudes during regional deformation and metamorphism: upper bound imposed by tensile fracturing. Geology 11:231–234

    Google Scholar 

  • Etheridge MA, Wall VJ, Vernon RH (1984) The role of the fluid phase during regional metamorphism and deformation. J Metamorphic Geol 1:205–226

    Google Scholar 

  • Etheridge MA, Wall VJ, Cox SF, Vernon RH (1983) High fluid pressures during regional metamorphism and deformation — implications for mass transport and deformation mechanisms. J geophys Res 89/B6:4344–4358

    Google Scholar 

  • Franck P, Wagner JJ, Escher A, Pavoni N (1984) Evolution des contraintes tectoniques et sismicité dans la région du Col Sanetsch, Alpes valaisannes helvétiques. Eclogae Geol Helv 77/2:383–393

    Google Scholar 

  • Frey M (1986) Very low grade metamorphism of the Alps an introduction. Schweiz Mineral Petrog Mitt 66:13–27

    Google Scholar 

  • Frey M, Hunziker JC, O'Neil JR, Schwander HW (1976) Equilibrium-disequilibrium relations in the Monte Rosa Granite, W Alps: petrological, Rb-Sr and stable isotope data. Contrib Mineral Petrol 55:147–179

    Google Scholar 

  • Frey M, Teichmüller M, Teichmüller R, Mullis J, Künzi B, Breitschmid A, Gruner U, Schwitzer B (1980) Very low grade metamorphism in external parts of the Central Alps: Illite crystallinity, coal rank and fluid inclusion data. Eclogae Geol Helv 73/1:173–203

    Google Scholar 

  • Furrer H, Hügi T (1952) Telemagmatischer Gang im Nummulitenkalk bei Trublen westlich Leukerbad (Kanton Wallis). Eclogae Geol Helv 45/1:42–51

    Google Scholar 

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the earth's crust. Elsevier, Amsterdam pp 320

    Google Scholar 

  • Fyfe WS, Kerrich R (1985) Fluids and thrusting. Chem Geol 49:353–362

    Google Scholar 

  • Gregory RT, Criss RE (1986) Isotopic exchange in open and closed systems. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geologic processes. Reviews in Mineralogy. Min Soc Amer vol 16:91–127

  • Hoefs J (1973, 1987) Stable isotope geochemistry. Springer, Berlin pp 135, 241

    Google Scholar 

  • Hoefs J, Frey M (1976) The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochimica et Cosmochimica Acta 40:945–951

    Google Scholar 

  • Hoefs J, Stalder HA (1977) The carbon isotope composition of CO2-bearing fluid inclusions in fissure quartz from the Central Alps. Schweiz Mineral Petrogr Mitt 57:329–347

    Google Scholar 

  • Hoernes S, Friedrichsen H (1978) Oxygen and hydrogen isotope study of the polymetamorphic area of the Northern Oetztal-Stubai Alps. Contrib Mineral Petrol 67:305–315

    Google Scholar 

  • Hoernes S, Friedrichsen H (1980) Oxygen and hydrogen isotopic composition of Alpine and Pre-Alpine minerals in the Swiss Central Alps. Contrib Mineral Petrol 72:19–32

    Google Scholar 

  • Holland HD, Malinn SD (1979) The solubility and occurence of Non-ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 567

    Google Scholar 

  • Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting. Geol Soc America Bull 70:155–166

    Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660

    Google Scholar 

  • Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps Switzerland. Contrib Mineral Petrol 92:157–180

    Google Scholar 

  • Kerrich R (1978) An historical review and synthesis of research on pressure solution. Zbl Geol Paläont Teil I, H 5/6:512–550

    Google Scholar 

  • Kerrich R (1986) Fluid transport in lineaments. Phil Trans R Soc London A 317:219–251

    Google Scholar 

  • Kerrich R, Beckinsdale RD, Durham JJ (1977) The transition between deformation regimes dominated by intercrystalline diffusion and intracrystalline creep evaluated by oxygen isotope thermometry. Tectonophysics 38:241–257

    Google Scholar 

  • Kerrich R, Beckinsale RD, Shackelton NJ (1978) The physical and hydrothermal regime of tectonic vein systems: evidence from stable isotope and inclusion studies. Neues Jahrbuch Mineral Abh 131:225–239

    Google Scholar 

  • Kerrich R, Rehrig W (1987) Large scale fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from Pichacho metamorphic core complex Arizona. Geology 15:58–62

    Google Scholar 

  • Kübler B, Pittion JL, Heroux Y, Charollais J, Weidmann M (1979) Sur le pouvoir réflecteur de la vitrinite dans quelques roches du Jura, de la Molasse, et des Nappes préalpines, helvétiques et penniques. Eclogae Geol Helv 72/2:347–375

    Google Scholar 

  • Kyser TK (1987) Short course in stable isotope geochemistry of low temperature fluids. Mineral Assoc Canada vol 13: pp. 452

    Google Scholar 

  • Laubscher HP (1983) Detachment, shear and compression on the Central Alps. In: Contr to the Tectonics and Geophysics of Mountain Chains. Geol Soc Amer Mem 158:191–211

    Google Scholar 

  • Longstaffe FJ (1987) Stable isotope studies of diagenetic processes. In: Kyser (ed) Short course in stable isotope geochemistry of low temperature fluids. Mineral Assoc Canada vol 13:187–257

  • Magaritz M (1974) Lithification of chalky limestone: a case study in Senonian rocks from Israel. J Sed Petrol 44:947–954

    Google Scholar 

  • McCrea JM (1950) The isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • Milnes AG, Pfiffner OA (1980) Tectonic evolution of the Central Alps in the cross section St. Gallen — Como. Eclogae Geol Helv 73:619–633

    Google Scholar 

  • Mugnier JL, Ménard G (1986) Le dévelopement du bassin molassique suisse et l'évolution des Alpes externes un modèle cinématique. Bull Centre Rech Explor Prod Elf Aquitaine 10/1:191–203

    Google Scholar 

  • Mullis J (1979) The system methan-water as a geologic thermometre and barometre from the external part of the central Alps. Bull Mineral 102:526–536

    Google Scholar 

  • Mullis J (1987) Fluid inclusion studies during very low grade metamorphism. In Frey M (ed) Low temperature metamorphism. Blackie Glasgow: 162–199

    Google Scholar 

  • Oliver J (1986) Fluids expelled tectonically from orogenic belts their role in hydrocarbon migration and other geologic phenomena. Geology 14:99–102

    Google Scholar 

  • O'Neil JR (1987) Preservation of H, C, and O isotope ratios in the low temperature environment. In: Kyser (ed) Short course in stable isotope geochemistry of low temperature fluids. Mineral Assoc Canada vol 13:85–128

  • O'Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Google Scholar 

  • Pfiffner OA (1982) Deformation mechanisms and flow regimes in limestones from the Helvetic zone of Swiss Alps. J Struct Geol 4:429–442

    Google Scholar 

  • Poty P, Stalder A, Weisbrod A (1974) Fluid inclusions studies in quartz from fissures of Western and Central Alps. Schweiz Mineral Petrogr Mitt 54/2+3:717–752

    Google Scholar 

  • Powell R, Condliffe DM, Condliffe E (1984) Calcite-dolomite geothermometry in the system CaCO3-MgCO3-FeCO3: an experimental study. J Metamorphic Geol 2:33–41

    Google Scholar 

  • Ramsay JG, Huber MI (1983) The techniques of modern structural geology, vol 1, strain analysis. Academic Press, London p 307

    Google Scholar 

  • Schmid SM (1982) Laboratory experiments on rheology and deformation mechanisms in calcite rocks and their application to studies in the field. Mitt Geol Inst ETH Univ Zürich 241:1–62

    Google Scholar 

  • Schmid SM, Casey M, Starkey J (1981) The microfabric of calcite tectonites from the Helvetic nappes (Swiss Alps). In: McClay K, Price NJ (eds) Thrust and nappe tectonics. Spec Publ geol Soc London 9:151–158

    Google Scholar 

  • Secor DT (1965) Role of fluid pressure in jointing. American J Sci 263:633–646

    Google Scholar 

  • Taylor BE, Bucher-Nurminen K (1986) Oxygen and carbon isotope and cation geochemistry of metasomatic carbonates and fluids — Bergell aureole Northern Italy. Geochim Cosmochim Acta 50:1267–1279

    Google Scholar 

  • Tucker ME (1983) Diagenesis and origin of Precambrian dolomite: the Beckspring dolomite of eastern California. J Sediment Petrol 53:1097–1119

    Google Scholar 

  • Trümpy R (1980) Geology of Switzerland. Part I, Wepf Basel, pp 104

    Google Scholar 

  • Valley JW, Taylor HP, O'Neil JR (1986) Stable isotopes in high temperature geological processes. Reviews in Mineralogy vol 16, Mineral Soc Amer, pp 570

  • Veizer J, Hoefs J (1976) The nature of 018/016 and C13/C12 secular trends in carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Google Scholar 

  • Weissert H, Bernoulli D (1984) Oxygen isotope composition of calcite in Alpine ophicarbonates: a hydrothermal or Alpine metamorphic signal. Eclogae Geol Helv 77:29–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhard, M., Kerrich, R. Fluid regimes in the deformation of the Helvetic nappes, Switzerland, as inferred from stable isotope data. Contr. Mineral. and Petrol. 99, 416–429 (1988). https://doi.org/10.1007/BF00371934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371934

Keywords

Navigation