Skip to main content
Log in

A periclase-dolomite-calcite carbonatite from the Oka complex, Quebec, and its calculated volatile composition

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The eutectic mineral assemblage calcite-dolomite-periclase-apatite-forsterite-magnesioferrite-pyrrhotite-alabandite in a carbonatite dike within the Oka complex, Quebec, buffers the fugacities (and partial pressures) of all gas species in C-O-H-S-F, assuming vapor saturation. At the inferred eutectic (640° C, 1 kbar), the most important gas species and their partial pressures (bars) were: H2O, 882; CO2, 110; H2, 4.6; H2S, 2.7; CO, 0.5; and CH4, 0.1. Oxygen fugacity was near the QFM buffer, logf(O2)=−18.6, and sulfur fugacity was near the QFM-pyrrhotite buffer, logf(S2)=−5.9. Fluorine fugacity was low, logf(F2)=−43.9, consistent with the absence of fluoride minerals other than apatite. Presence of a water-rich gas phase is consistent with experiments on synthetic carbonatite systems (e.g. Fanelli et al. 1981), although compositions of the gas phase in published experiments cannot be determined exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anovitz LM, Essene EJ (1982) Phase relations in the system CaCO3-MgCO3-FeCO3. EOS (Trans Am Geophys Un) 63:464

    Google Scholar 

  • Aspden JA (1981) The composition of solid inclusions and the occurrence of shoritite in apatites from the Tororo carbonatite complex of eastern Uganda. Mineral Mag 44:201–204

    Google Scholar 

  • Barton, PB Jr (1970) Sulfide petrology. Mineral Soc Am Spec Pap 3:187–198

    Google Scholar 

  • Boettcher AL, Robertson JK, Wyllie PJ (1980) Studies in synthetic carbonatite systems: solidus relationships for CaO-MgO-CO2-H2O to 40kbar and CaO-MgO-SiO2-H2O to 10 kbar. J Geophys Res 85B:6937–6943

    Google Scholar 

  • Boettcher AL, Wyllie PJ (1969) The system CaO-SiO2-CO2-H2O-III Second critical end-point on the melting curve. Geochim Cosmochim Acta 33:611–632

    Google Scholar 

  • Bohlen SR, Essene EJ (1977) Feldspar and oxide thermometry of granulites in the Adirondack highlands. Contrib Mineral Petrol 62:153–169

    Google Scholar 

  • Burnham CW, Holloway JR, Davis NF (1969) Thermodynamic properties of water to 1,000° C and 10,000 bars. Geol Soc Am Spec Pap 132, 96p

  • Clark SP Jr ed (1966) Handbook of Physical Constants. Geol Soc Am Mem 97, 587 p

  • Eby GN (1975) Abundance and distribution of the rare earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec. Geochim Cosmochim Acta 39:597–620

    Google Scholar 

  • Engi M (1980) The solid solution behavior of olivine in the temperature range from 500K to 1,500K. Geol Soc Am Abstr. Prog 12:421

    Google Scholar 

  • Essene EJ (1982) Geologic thermometry and barometry. Chap 5, 153–206 In Ferry J ed, Reviews in Mineralogy 10: Characterization of Metamorphism through Mineral Equilibria

  • Essene EJ, Wall VJ, Westrum EF jr (1980) Thermodynamics and phase equilibria for fayalite. Geol Soc Am Abstr Prog 12:422

    Google Scholar 

  • Eugster HP, Skippen GB (1967) Igneous and metamorphic reactions involving gas equilibrium. In Abelson, ed. Researches in Geochemistry, vol II, John Wiley & Sons, pp 492–520

  • Fanelli MF, Cava N, Wyllie PJ (1981) Co-precipitation of calcite and dolomite without portlandite in CaO-MgO-CO2-H2O at 2 kbar illuminates carbonatite petrogenesis. EOS (Trans Am Geophys Un) 62:413

    Google Scholar 

  • Fukuoka M (1981) Mineralogical and genetical study on alabandite from the manganese deposits of Japan. Mem Fac Sci Kyushu Univ, Ser D Geol 24:207–251

    Google Scholar 

  • Gittins J (1979) Problems inherent in the application of calcite-dolomite thermometry to carbonatites. Contrib Mineral Petrol 69:1–4

    Google Scholar 

  • Gittins J, McKie D (1980) Alkalic carbonatite magmas: Oldoinyo Lengai and its wider applicability. Lithos 13:213–215

    Google Scholar 

  • Gold DP (1963) The relationships between the limestones and the alkaline rocks of Oka and St. Hilaire, Quebec. PhD Diss McGill Univ, Montreal

    Google Scholar 

  • Gold DP (1967) Alkaline ultrabsic rocks in the Montral area, Quebec. In Wyllie PJ ed, Ultramafic and Related Rocks. J Wiley and Sons, New York, p 288–302

    Google Scholar 

  • Gold DP (1972) The Monteregian hills: ultra-alkaline rocks and the Oka complex. Intl Geol Cong 24th, Montral, Guidebook B-11

  • Gold DP, Vallée M (1969) Excursion geologique dans la region d'Oka. Ministere des richesses naturelles Quebec, pub S-101, 37 p

  • Gold DP, Vallée M, Charette J-P (1967) Economic geology and geophysics of the Oka alakaline complex, Quebec. Can Inst Min Metall Bull 60:1131–1144

    Google Scholar 

  • Goldsmith JR, Newton BC (1969) P-T-X relations in the system CaCO3-MgCO3 at high temperature and pressure. Am J Sci 267A:160–190

    Google Scholar 

  • Graf DL, Goldsmith JR (1955) Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures. Geochim Cosmochim Acta 10:109–118

    Google Scholar 

  • Graf DL, Goldsmith JR (1958) The solubility of MgCO3 in CaCO3: a revision. Geochim Cosmochim Acta 13:218–219

    Google Scholar 

  • Harker RI, Tuttle OF (1955) Studies in the system CaO-MgO-CO2. Part I The thermal dissociation of calcite, dolomite, and magnesite. Am J Sci 253:209–224

    Google Scholar 

  • Harrington BJ (1907) Isomorphism as illustrated by certain varieties of magnetite. Mineral Mag 14:373–377

    Google Scholar 

  • Heinrich EW (1966) The Geology of Carbonatites. J Wiley & Sons, NY 555 p

    Google Scholar 

  • Hewitt DA (1978) A redetermination of the fayalite-magnetite-quartz equilibrium between 650 and 850° C. Am J Sci 278:715–724

    Google Scholar 

  • Katsura T, Kimura S (1965) Equilibria in the system FeO-Fe2O3-MgO at 1,160° C, Bull Chem Soc Japan 38:1664–1670

    Google Scholar 

  • Kerrick DM, Jacobs GK (1981) A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. Am J Sci 281:735–767

    Google Scholar 

  • Lindsley, DH (1976) Experimental studies of oxide minerals. InRumble D III ed, Oxide Minerals, Short Course Notes 3, Mineral Soc Am, L61–L87

  • Loubet M, Bernat M, Javoy M, Allegre CJ (1972) Rare earth contents in carbonatites. Earth Planet Sci Lett 14:226–232

    Google Scholar 

  • Mann GS, van Vlack LH (1976) FeS-MnS phase relationships in the presence of excess iron. Metall Trans 7B:469–475

    Google Scholar 

  • Mariano AN, Roeder PL (1983) Kerimasi: A neglected carbonatite volcano. J Geol 91:449–455

    Google Scholar 

  • McMahon BM, Haggerty SE (1979) The Oka carbonatite complex: magnetite compositions and the related role of titanium in pyrochlore. In Boyd FR, Meyers HOA, eds Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry. Am Geophys Union, Wash DC, pp 382–392

    Google Scholar 

  • Myers J, Eugster HP (1983) The system Fe-Si-O: Oxygen buffer calibrations to 1,500K. Contrib Mineral Petrol 82:75–90

    Google Scholar 

  • Nesbitt BE, Kelly WC (1977) Magmatic and hydrothermal inclusions in carbonatite of the Magnet Cove complex, Arkansas. Contrib Mineral Petrol 63:271–294

    Google Scholar 

  • Rankin AH (1975) Fluid inclusion studies in apatite from carbonatites of the Wasaki area of western Kenya. Lithos 8:123–136

    Google Scholar 

  • Rankin AH (1977) Fluid-inclusion evidence for the formation conditions of apatite form the Tororo carbonatite complex of eastern Uganda. Mineral Mag 41:155–164

    Google Scholar 

  • Rice JM (1977) Contact metamorphism of impure dolomitic limestone in the Boulder aureole, Montana. Contrib Mineral Petrol 59:237–259

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452 revised, 456 p

  • Robie RA, Finch CB, Hemingway BS (1982) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383K: comparison of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463–469

    Google Scholar 

  • Rucklidge JC, Gasparrini EL (1969) Specifications of a complete program for processing electron microprobe data: EMPADR VII. Dept of Geology, Toronto University, unpublished circular

  • Ryzhenko BN, Volkov VP (1971) Fugacity coefficients of some gasses in a broad range of temperatures and pressures. Geochem Intl 8:468–481

    Google Scholar 

  • Saxena SK (1973) Thermodynamics of Rock-Forming Crystalline Solutions. Springer-Verlag, NY, 188 p

    Google Scholar 

  • Shishkov VI, Lykasov AA, Il'ina AF (1980) Activity of the components of iron-magnesium spinel. Russ Jour Phys Chem 54:440–441

    Google Scholar 

  • Shmulovich KI, Mazur VA, Kalinichev AG, Khodorevskaya LI (1982) P-V-T and component activity-concentration relations for systems of the H2O-non-polar gas type. Geochem Intl 1980:18–30

    Google Scholar 

  • Skinner BJ, Luce FD (1971) Solid solutions of the type (Ca, Mg, Mn, Fe) S and their use as geothermometers for enstatite chondrites. Am Mineral 56:1269–1296

    Google Scholar 

  • Slaughter J, Wall VJ, Kerrick DM (1976) APL computer program for thermodynamic calculations of quilibria in \({\text{P - T - X}}_{{\text{CO}}_{\text{2}} } \) space. Contrib Mineral Petrol 54:157–171

    Google Scholar 

  • Speidel DH (1967) Phase equilibria in the system MgO-FeO-Fe2O3: the 1,300°C isothermal section and extrapolations to other temperatures. J Am Ceram Soc 50:243–248

    Google Scholar 

  • Stull DR, Prophet H eds (1971) JANAF Thermochemical Tables, Second Edition. National Standard Reference Data Ser 37, National Bureau Standards, 1,141 p

  • Toulmin P III, Barton PB Jr (1964) A thermodynamic study of pyrite and pyrrhotite. Geochim Cosmochim Acta 28:641–671

    Google Scholar 

  • Treiman AH (1982) The Oka carbonatite complex Quebec: aspects of carbonatite petrogenesis. PhD Diss Univ Michigan, Ann Arbor

    Google Scholar 

  • Treiman AH, Essene EJ (1983) High-termperature phase equilibria in CaO-SiO2-CO2. Am J Sci 283A:97–120

    Google Scholar 

  • Van de Pijpekamp B, Burke EAS, Maaskant P (1969) Magnesioferrite, a new mineral for Långban, Sweden. Arkiv for mineralogi och geology 5:1–10

    Google Scholar 

  • Vuklovich MP, Altunin VV (1965) Teplofizicheskiye Svoystva Dvuokiski Ugleroda (Thermophysical Properties of Carbon Dioxide) Atomizdat, Moscow

    Google Scholar 

  • Westrich HR, Navrotsky A (1981) Some thermodynamic properties of fluorapatite, fluorpargasite, and fluorphlogopite. Am J Sci 281:1091–1103

    Google Scholar 

  • Wones DR, Gilbert MC (1969) The fayalite-magnetite-quartz assemblage between 600° and 800° C. Am J Sci 267A:480–488

    Google Scholar 

  • Wyllie PJ, Biggar GM (1966) Fractional crystallization in the “carbonatite systems” CaO-MgO-CO2-H2O and CaO-CaF2-P2O5-CO2-H2O. Mineral Soc India, IMA vol, p 67–82

  • Wyllie PJ, Haas JL Jr (1965) The system CaO-SiO2-CO2-H2O: 1. Melting relationships with excess vapor at 1 kilobar pressure. Geochim Cosmochim Acta 29:871–889

    Google Scholar 

  • Wyllie PJ, Tuttle OF (1960) The system CaO-CO2-H2O and the origin of carbonatites. J Petrol 1:1–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution no. 390 from the Mineralogical Laboratory, The University of Michigan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treiman, A.H., Essene, E.J. A periclase-dolomite-calcite carbonatite from the Oka complex, Quebec, and its calculated volatile composition. Contr. Mineral. and Petrol. 85, 149–157 (1984). https://doi.org/10.1007/BF00371705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371705

Keywords

Navigation