Skip to main content
Log in

Low-temperature compatibility relations of the assemblage quartz-paragonite and the thermodynamic status of the phase rectorite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The reaction 3 Na-montmorillonite + 2 albite ⇌ 3 paragonite + 8 quartz has been studied experimentally using starting materials composed of natural low albite, kaolinite and quartz. Rate studies at 2, 4 and 7 kb demonstrate that the reaction takes place at ∼335−315° C from lower to higher pressures. Attempts to reverse this reaction with runs lasting several months were without success. Comparison with pertinent data from natural mineral assemblages indicate that despite non-reversal, the data presented here may be very near to the true lower thermal compatibility limit of the assemblage quartz-paragonite.

The above reaction becomes metastable beyond the upper pressure stability limit of the phase Na-montmorillonite; it is replaced here by another reaction 1 albite + 1 kaolinite ⇌ 1 paragonite + 2 quartz + 1 H2O, as suggested originally by Zen (1960). A P-T-grid showing possible compatibility relations of the assemblage quartz-paragonite is provided (Fig. 4). Perusal of natural assemblages belonging to the subsystem Na2O-Al2O3-SiO2-H2O lends credence to this grid.

In course of the rate studies reported here, various regular paragonite-sodium montmorillonite mixed-layer phases were encountered (Fig. 2); the 1∶1 regular mixed-layer phase represents the synthetic analogue of the mineral rectorite (sometimes called allevardite), widely recorded from deep diagenetic and anchimetamorphic environments. Results of rate-studies (Fig. 3) suggest that the mixed-layer phases are all transient, metastable products obtained during the transformation of the albite-Na-montmorillonite assemblage to paragonite-quartz. As such, rectorite and related mixed-layer phases on the join montmorillonite-paragonite, are always less stable relative to the assemblage Na-montmorillonite-paragonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenees

  • Bannister, F. A.: Brammallite (sodium illite), a new mineral from Llandebie, south Wales. Mineral. Mag. 26, 304–307 (1943)

    Google Scholar 

  • Brown, G., Weir, A. H.: The identity of rectorite and allevardite. 1st Natl. Clay Conf., Proc. 1, 27–35 (1963)

    Google Scholar 

  • Chatterjee, N. D.: Zur Achsenkarte des inneren Westalpenbogens. II. Petrographische Auswertung des Probenmaterials. Neues Jahrb. Geol. Palaeont., Monatsh. 587–606 (1962)

  • Chatterjee, N. D.: Synthesis and upper stability of paragonite. Contr. Mineral. and Petrol. 27, 244–257 (1970)

    Google Scholar 

  • Chatterjee, N. D.: Phase equilibria in the Alpine metamorphic rocks of the environs of the Dora-Maira-Massif, western Italian Alps. Neues Jahrb. Mineral., Abhandl. 114, 181–245 (1971)

    Google Scholar 

  • Chatterjee, N. D.: The upper stability limit of the assemblage paragonite + quartz and its natural occurrences. Contr. Mineral. and Petrol., 34, 288–303 (1972)

    Google Scholar 

  • Cole, W. F.: A study of a long-spacing mica-like mineral. Clay Minerals 6, 261–282 (1966)

    Google Scholar 

  • Coombs, D. S.: The nature and alteration of some Triassic sediments from Southland, New Zealand. Roy. Soc. New Zealand Trans. 82, 65–109 (1954)

    Google Scholar 

  • Dunoyer de Segonzac, G.: The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentology 15, 281–346 (1970)

    Google Scholar 

  • Dunoyer de Segonzac, G., Heddebaut, C.: Paléozoique anchi-métamorphique à illite, chlorite, pyrophyllite, allevardite et paragonite dans les Pyrénées Basques. Bull. Serv. Carte Géol. Alsace Lorraine 24, 277–290 (1971)

    Google Scholar 

  • Eslinger, E. V., Savin, S. M.: Mineralogy and oxygen isotope geochemistry of the hydrothermally altered rocks of the Ohaki-Broadland, New Zealand geothermal area. Am. J. Sci. 273, 240–267 (1973)

    Google Scholar 

  • Eugster, H. P., Yoder, H. S.: Paragonite. Carnegie Inst. Washington Yearbook 53, 111–114 (1954)

    Google Scholar 

  • Frey, M.: Die Metamorphose des Keupers vom Tafeljura bis zum Lukmanier-Gebiet. Beitr. Geol. Karte Schweiz, N. F. 137, 160 p. (1969)

  • Frey, M.: The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology 15, 261–279 (1970)

    Google Scholar 

  • Frey, M.: Progressive low-grade metamorphism of a black-shale formation, central Swiss Alps (abstract). Ann. Meeting Geolog. Soc. Am., Abstract 4, 512 (1972)

    Google Scholar 

  • Ghent, E. D., Jones, J. W., Nicholls, J.: A note on the significance of the assemblage calcitequartz-plagioclase-paragonite-graphite. Contr. Mineral. and Petrol. 28, 112–116 (1970)

    Google Scholar 

  • Gonzalez Martinez, J., Fenoll Hach-Ali, P., Martin Vivaldi, J. L.: Estudio minéralogico de niveles arcillosos del trîas alpujárride. Bol. Geológico y Minero 81, 620–629 (1970)

    Google Scholar 

  • Gruner, J. W.: Conditions for the formation of paragonite. Am. Mineralogist 27, 131–134 (1942)

    Google Scholar 

  • Haas, H.: Equilibria in the system Al2O3-SiO2-H2O involving the stability limits of diaspore and pyrophyllite, and thermodynamic data of these minerals. Diss. Southern Methodists Univ., Dallas, 30 p. (1971)

    Google Scholar 

  • Hamilton, J. D.: Partially ordered mixed-layer mica-montmorillonite from Maitland, New South Wales. Clay Minerals 7, 63–78 (1967)

    Google Scholar 

  • Harder, H.: Untersuchungen an Paragoniten und an natriumhaltigen Muskoviten. Heidelberger Beitr. Mineral. Petrogr. 5, 227–271 (1956)

    Google Scholar 

  • Helgeson, H. C.: Kinetics of mass transfer among silicates and aqueous solutions. Geochim. Cosmochim. Acta 35, 421–469 (1971)

    Google Scholar 

  • Hemley, J. J.: Stability relations of pyrophyllite, andalusite, and quartz at elevated pressures and temperatures (Abstract). Am. Geophys. Union Trans. 48, 224 (1967)

    Google Scholar 

  • Hemley, J. J., Meyer, C., Richter, D. H.: Some alteration reactions in the system Na2O-Al2O3-SiO2-H2O. U. S. Geol. Surv. Prof. Paper 424-D, 338–340 (1961)

    Google Scholar 

  • Henderson, G. V.: The origin of pyrophyllite-rectorite in shales of north central Utah. Utah Geol. Mineral. Surv. Special Studies 34, 46 p. (1971)

  • Holdaway, M. J.: Stability of andalusite and the aluminium silicate phase diagram. Am. J. Sci. 271, 97–131 (1971)

    Google Scholar 

  • Kerr, P. F.: Analytical data on reference clay minerals. American Petroleum Institute, Project 49, Clay Mineral Standards, Preliminary Report No. 7, (1950)

  • Kerrick, D. M.: Experiments on the upper stability limit of pyrophyllite at 1.8 kilobars and 3.9 kilobars water pressure. Am. J. Sci. 266, 204–214 (1968)

    Google Scholar 

  • Kisch, H. J.: Coal rank and lowest-grade regional metamorphism in the southern Bowen Basin, Queensland, Australia. Geol. Mijnbouw 47, 28–36 (1968)

    Google Scholar 

  • Kodama, H.: The nature of the component layers of rectorite. Am Mineralogist 51, 1035–1055 (1966)

    Google Scholar 

  • Liborio, G., Mottana, A., Pasquarè, G., Rossi, P. M.: Paragonite come componente essenziale dei calcescisti nel Gruppo di Voltri. Rend. Soc. Italiana Mineral. Petrol. 26, 669–685 (1970)

    Google Scholar 

  • Morey, G. W., Fournier, R. O.: The decomposition of microcline, albite and nepheline in hot water. Am. Mineralogist 46, 688–699 (1961)

    Google Scholar 

  • Purtscheller, F., Hoernes, S., Brown, G. C.: An example of occurrence and breakdown of paragonite. Contr. Mineral. and Petrol. 35, 34–42 (1972)

    Google Scholar 

  • Quinn, A. W., Glass, H. W.: Rank of coal and metamorphic grade of rooks of the Narragansett Basin of Rhode Island. Econ. Geol. 53, 563–576 (1958)

    Google Scholar 

  • Reed, B. L., Hemley, J. J.: Occurence of pyrophyllite in the Kekiktuk Conglomerate, Brooke Range, northeastern Alaska. U. S. Geol. Surv. Profess. Paper 550-C, 162–166 (1966)

    Google Scholar 

  • Sand, L. B., Roy, R., Osborn, E. F.: Stability relations of some minerals in the Na2O-Al2O3-SiO2-H2O system. Econ. Geol. 52, 169–179 (1957)

    Google Scholar 

  • Smith, J. V.: The powder patterns and lattice parameters of plagioclase feldspars. I. The soda-rich plagioclases. Mineral. Mag. 31, 47–68 (1956)

    Google Scholar 

  • Thompson, A. B.: A note on the kaolinite-pyrophyllite equilibrium. Am. J. Sci. 268, 454–458 (1970)

    Google Scholar 

  • Zen, E-an: Metamorphism of lower Paleozoic rocks in the vicinity of the Taconic Range in west-central Vermont. Am. Mineralogist 45, 129–175 (1960)

    Google Scholar 

  • Zen, E-an: Problem of the thermodynamic status of the mixed-layer minerals. Geochim. Cosmochim. Acta 26, 1055–1067 (1967)

    Google Scholar 

  • Zen, E-an, Albee, A. L.: Coexistent muscovite and paragonite in pelitic schists. Am. Mineralogist 49, 904–925 (1964)

    Google Scholar 

  • Zen, E-an, Thompson, A. B.: Low grade regional metamorphism: mineral equilibrium relations. In: Annual review of earth and planetary sciences (ed. Fred Donath), vol. 2, New York: Annual Reviews Inc. (1974) (in Press)

    Google Scholar 

Reference

  • Kramm, U.: Chloritoid stability in manganese rich low-grade metamorphic rocks, Venn-Stavelot massif, Ardennes. Contr. Mineral. and Petrol. 41, 179–196 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N.D. Low-temperature compatibility relations of the assemblage quartz-paragonite and the thermodynamic status of the phase rectorite. Contr. Mineral. and Petrol. 42, 259–271 (1973). https://doi.org/10.1007/BF00371590

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371590

Keywords

Navigation