Skip to main content
Log in

Systematics in the fission track annealing of minerals

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A linear relationship exists between annealing temperatures and activation energies of fission tracks for different minerals. The temperature and activation energy needed to erase 50% of the tracks in minerals depend on the lattice energy per mole. These relationships make possible predictions about the stability of tracks in silicates, provided their chemical composition is known or a few isochronal annealing data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crosaz, G., Haack, U., Hair, M., Maurette, M., Walker, R., Woolum, D.: Nuclear track studies of ancient solar radiations and dynamic lunar surface processes. Proced. Apollo 11 Lunar Sci. Conf. 3, 2051 (1970).

    Google Scholar 

  2. Crosaz, G., Hair, M., Maurette, M., Walker, R. M.: Nuclear interaction tracks in minerals and their implications for extraterrestrial material, Proced. Intern. Topical Conf. on Nuclear Track Registration in Insulating Solids and Applications, VII, p. 41. Clermont-Ferrand 1969.

  3. Deer, W. A., Howie, R. A., Zussman, J.: Rock forming minerals, vol. 2. London: Longmans 1965.

    Google Scholar 

  4. Fleischer, R. L., Price, P. B.: Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. Cosmochim. Acta 28, 1705 (1964).

    Google Scholar 

  5. Fleischer, R. L., Price, B. P., Symes, E. M.: Fission-track ages and track-annealing behavior of some micas. Science 143, 349 (1964).

    Google Scholar 

  6. Fleischer, R. L., Price, P. B., Walker, R. M.: Effects of temperature, pressure and ionization of the formation and stability of fission tracks in minerals and glasses. J. Geophys. Res. 70, 1497 (1965a).

    Google Scholar 

  7. Fleischer, R. L., Price, P. B., Walker, R. M.: Solid state track detectors: applications to nuclear science and geophysics. Ann. Rev. Nucl. Sci. 15, 1 (1965b).

    Google Scholar 

  8. Fleischer, R. L., Price, P. B., Walker, R. M., Charged particle tracks: tools for geochronology and meteorite studies. In: E. I. Hamilton and R. M. Farquhar (eds.), Radiometric dating for geologists, p. 417. London: Interscience 1968.

    Google Scholar 

  9. Fleischer, R. L., Price, P. B., Walker, R. M.: Fission track dating and processes in the earth's interior. In: S. K. Runcorn (ed.), The application of modern physics to the earth and planetary interiors. p. 499. London: Wiley-Interscience 1969.

    Google Scholar 

  10. Fleischer, R. L., Price, P. B., Walker, R. M., Maurette, M.: Origins of fossil charged-particle tracks in meteorites. J. Geophys. Res. 72, 331 (1967).

    Google Scholar 

  11. Geguzin, Yu. E., Berzina, I. G., Vorab'yeva, I. U.: On the thermal stability of tracks of uranium fission fragments in single crystals of muscovite according to data from chemical etching experiments. Akad. Nauk. SSR. Izv., Sér. Geol. 31, no 6, 21 (1966) [Russian].

    Google Scholar 

  12. Haack, U., Potts, M.: Fission track annealing in garnet. Contr. Mineral. and Petrol. 34, 343 (1972).

    Google Scholar 

  13. Maurette, M.: Track formation mechanisms in minerals. Proced. Intern. Topical Conf. on Nuclear Track Registration in Insolating Solids and Applications, I, p. 2. Clermont-Ferrand 1969.

  14. Maurette, M., Pellas, P., Walker, R. M.: Étude des traces de fission fossiles dans le mica. Bull. Soc. Franç. Minéral. Crist. 87, 6 (1964).

    Google Scholar 

  15. Metha, P. P., Rama: Annealing effects in muscovite and their influence on dating by fission track method. Earth Planet. Sci. Letters 7, 82 (1969).

    Google Scholar 

  16. Naeser, C. W., Engels, J. C., Dodge, F. C. W.: Fission track annealing and age determination of epidote minerals. J. Geophys. Res. 75, 1579 (1970).

    Google Scholar 

  17. Naeser, C. W., Faul, H.: Fission track annealing in apatite and sphene. J. Geophys. Res. 74, 705 (1969).

    Google Scholar 

  18. Saukow, A. A.: Geochemie. Berlin: VEB Verlag Technik 1953.

    Google Scholar 

  19. Seitz, M.: Priv. communication (1972).

  20. Seitz, M., Wittels, M. C., Maurette, M., Walker, R. M.: Accelerator irrations of minerals: Implications for track formation mechanisms and for studies of lunar and meteoritic minerals. Proc. Intern. Topical Conference on Nuclear Track Registration in Insolating Solids and Applications, VII, p. 55. Clermont-Ferrand 1969.

  21. Shukolyukow, Yu. A., Krylov, I. N., Tolstikhin, I. N., Ovchinnikova, G. V.: Tracks of uranium fission fragments in muscovite. Geochemicstry International, translated from Geokhimiya 3, 291 (1965).

    Google Scholar 

  22. Wagner, G.: Spuren der spontanen Kernspaltung des 238 Urans als Mittel zur Datierung von Apatiten und ein Beitrag zur Geochronologie des Odenwaldes. Ph. D. thesis, University of Heidelberg (1967).

  23. Vand, V.: A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. (London) 55, no. 309, 222 (1943).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haack, U. Systematics in the fission track annealing of minerals. Contr. Mineral. and Petrol. 35, 303–312 (1972). https://doi.org/10.1007/BF00371312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371312

Keywords

Navigation