Skip to main content
Log in

On culturing Escherichia coli on a mineral salts medium during anaerobic conditions

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The substrate and products of the hydrogenlyase complex, formic acid, carbon dioxide, and molecular hydrogen, are co-operatively implicated in maintaining growth of E. coli under anaerobic conditions. Growth is observed in the presence of a combination of carbon dioxide + molecular hydrogen, or carbon dioxide + formic acid in the medium. The study shows that it is possible to culture E. coli under anaerobic conditions while sparging with nitrogen, without supplementing exogenous carbon dioxide, formic acid or molecular hydrogen. This condition occurs when the strain is allowed an appropriate induction period and is present at a sufficiently high cell density, since the cell density affects the rate of e.g. CO2 production. In a system sparged with nitrogen gas, the removal of CO2 due to this sparging must be balanced with a cell density dependent production rate of CO2. It is concluded that the “formic hydrogenlyase complex” should be considered as an integral part of the general maintenance of the anabolism of E. coli during anaerobic conditions on a mineral salts medium, as well as being a net producer of end products in E. coli metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swanson, H. D.: Ogg, J. E.: Carbon dioxide regulation of formate hydrogenlyase in Escherichia coli. Biochem. Biophys. Res. Comm. 36 (1969) 4: 567–575

    Google Scholar 

  2. Repaske, R.: Clayton, M. A.: Control of Escherichia coli growth by CO2. J. Bacteriol. 135 (1978) 1162–64

    Google Scholar 

  3. Hems, R.; Saez, G. T.: Equilibration of metabolic CO2 with performed CO2 and bicarbonate. FEBS letters 153 (1983) 2: 438–440

    Google Scholar 

  4. Fujita, N.: Izui, K.: Nishino, T.: Katsuki, H.: Reaction mechanism of Phosphoenolpyruvate Carboxylase. Bicarbonate-Dependent Dephosphorylation of Phosphoenol-α-ketobuturate, Biochemistry 23 (1984) 174–1779

    Google Scholar 

  5. Lacoursiere, A.: Thompson, B. G.; Kole, M. M.; Ward, D.; Gerson, D.F.: Effects of carbon dioxide concentration on anaerobic fermentation's of Escherichia coli. Appl. microbiol. Biotechnol. 23 (1986) 404–6

    Google Scholar 

  6. Hörnsten, E. G.: Carbon dioxide affects the growth rate of “oxygen limited” Escherichia coli at low concentrations of oxygen. Biotechnol. lett. 14 (1992) 3: 189–194

    Google Scholar 

  7. Clark, D. P.: The fermentation pathways of Escherichia coli. Microbiol. Rev. 63 (1989) 223–234

    Google Scholar 

  8. Visser, W.: Scheffers, A.W.; Batenburg-van der Vegte, W. H.; van Dijken, P.: Oxygen requirements of yeasts. Appl. Environ. Microbiol. 56 (1990) 12: 3785–92

    Google Scholar 

  9. Yegneswaran, P. K.; Gray, M.: Thompson, B. G.: Kinetics of CO2 Hydration in fermentors: pH and pressure effects. Biotechnol. Bioeng. 36 (1990) 92–96

    Google Scholar 

  10. Hörnsten, E. G.: On using H2 as parameter in studies of mixing. Bioproc. Eng. 7 (1992) 7: 287–290

    Google Scholar 

  11. Hörnsten, E. G.; Danielsson, B.; Elwing, H.; Lundström, I.: Sensorized on line determinations of molecular hydrogen in Escherichia coli fermentation's. Appl. Microbiol. Biotechnol. 24 (1986) 117–121

    Google Scholar 

  12. Hörnsten, E. G.; Nilsson, L. E.; Danielsson, B.: The production of molecular hydrogen by Escherichia coli during ampicillin-induced spheroplast formation. Appl. Microbiol. Biotechnol. 32 (1990) 455–60

    Google Scholar 

  13. Hörnsten, E. G.; Lundström, I.; Elwing, H.: Some biometrical applications of molecular hydrogen and ammonia determination by the use of metal-oxide-semiconductor devices. In, Bioinstrumentation; research, developments and applications. Ed. D. L. Wise, pp 47–91. Boston: Butterworths 1990

    Google Scholar 

  14. Gray, P. P.; Dunnill, P.; Lilly, M. D.: The effect of controlled feeding of glycerol on β-galactosidase production by Escherichia coli in batch culture. Biotechnol. Bioeng. 15 (1973) 1179–88

    Google Scholar 

  15. Ballantine, S. P.: Boxer, D. H.: Nickel containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K12. J. Bacteriol. 163 (1985) 2: 454–459

    Google Scholar 

  16. Waugh, R.: Boxer, D. H.: Pleiotropic hydrogenase mutants of Escherichia coli K12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68 (1986) 157–166

    Google Scholar 

  17. Pinsent, J.: The need for Selenite and Molybdate in the formation of formic dehydrogenase by members of the Coli-aerogenes group of bacteria. J. Biochem. J. 57 (1954) 10–16

    Google Scholar 

  18. Gest, H.: Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol. rev. 18 (1954) 43–73

    Google Scholar 

  19. Gottschalk, G.: In: Bacterial Metabolism, Berlin: Springer-Verlag 1988

    Google Scholar 

  20. Sawers, R. G.; Ballantine, S. P.; Boxer, D. H.: Differential expression of hydrogenase isoenzymes in Escherichia coli K-12. Evidence for a third isoenzyme. J. Bacteriol. 164 (1985) 3: 1324–1331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Swedish National Board for Industrial and Technical Development. A. Askendahl is acknowledged for valuable assistance in the preparation of figures and P. Warkentin for language editing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörnsten, E.G. On culturing Escherichia coli on a mineral salts medium during anaerobic conditions. Bioprocess Engineering 12, 157–162 (1995). https://doi.org/10.1007/BF00369595

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369595

Keywords

Navigation