Skip to main content
Log in

31P NMR and 13C NMR studies of recombinant Saccharomyces cerevisiae with altered glucose phosphorylation activities

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Manipulation of cellular metabolism to maximize the yield and rate of formation of desired products may be achieved through genetic modification. Batch fermentations utilizing glucose as a carbon source were performed for three recombinant strains of Saccharomyces cerevisiae in which the glucose phosphorylation step was altered by mutation and genetic engineering. The host strain (hxk1 hxk2 glk) is unable to grow on glucose or fructose; the three plasmids investigated expressed hexokinase PI, hexokinase PII, or glucokinase, respectively, enabling more rapid glucose and fructose phosphorylation in vivo than that provided by wild-type yeast.

Intracellular metabolic state variables were determined by 31P NMR measurements of in vivo fermentations under nongrowth conditions for high cell density suspensions. Glucose consumption, ethanol and glycerol production, and polysaccharide formation were determined by 13C NMR measurements under the same experimental conditions as used in the 31P NMR measurements. The trends observed in ethanol yields for the strains under growth conditions were mimicked in the nongrowth NMR conditions.

Only the strain with hexokinase PI had higher rates of glucose consumption and ethanol production in comparison to healthy diploid strains in the literature. The hexokinase PII strain drastically underutilized its glucose-phosphorylating capacity. A regulation difference in the use of magnesium-free ATP for this strain could be a possible explanation. Differences in ATP levels and cytoplasmic pH values among the strains were observed that could not have been foreseen. However, cytoplasmic pH values do not account for the differences observed among in vivo and in vitro glucose phosphorylation activities of the three recombinant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, J. E.; Axe, D. D.; Galazzo, J. L.; Reardon, K. F.; Seressiotis, A.; Shanks, J. V.: Redirection of cellular metabolism: analysis and synthesis. Ann. N.Y. Acad. Sci. 506 (1987) 1–23

    Google Scholar 

  2. Ensley, B. D.; Ratzkin, B. J.; Osslund, T. D.; Simon, M. J.; Wackett, L. P.; Gibson, D. T.: Expression of naphthalene oxidation genes in Escherichia coli. Results in the biosynthesis of indigo. Science 222 (1983) 167–169

    Google Scholar 

  3. Anderson, S.; Marks, C. B.; Lazarus, R.; Miller, J.; Stafford, K.; Seymour, J.; Light, D.; Rastetter, W.; Estell, D. E.: Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modified Erwinia herbicola. Science 230 (1985) 144–149

    Google Scholar 

  4. Windaas, J. D.; Worsey, M. J.; Pioli, E. M.; Pioli, D.; Barth, P. T.; Atherton, K. T.; Dart, E. C.; Bryom, D.; Powell, K.; Senior, P. J.: Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature 287 (1980) 396–401

    Google Scholar 

  5. Galazzo, J. L.; Bailey, J. E.: In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeast Saccharomyces cerevisiae. Biotechnol. Bioeng. 33 (1989) 1283–1289

    Google Scholar 

  6. Doran, P. M.; Bailey, J. E.: Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol. Bioeng. 28 (1986) 73–87

    Google Scholar 

  7. Galazzo, J. L.; Bailey, J. E.: Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme and Microb. Technol. 12 (1990) 162–172

    Google Scholar 

  8. Reibstein, D.; den Hollander, J. A.; Pilkis, S. J.; Shulman, R. G.: Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry 25 (1986) 219–227

    Google Scholar 

  9. Colowick, S. P.: The hexokinases. In: Boyer, P. D. (Ed.): The enzymes, vol. 9, part B, 3rd ed., pp. 1–48. New York: Academic 1973

    Google Scholar 

  10. Maitra, P. K.: A glucokinase from Saccharomyces cerevisiae. J. Biol. Chem. 245 (1970) 2423–2431

    Google Scholar 

  11. Lobo, Z.; Maitra, P. K.: Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae. Bioc. Biop. 182 (1977) 639–645

    Google Scholar 

  12. Gancedo, J.-M.; Clifton, D.; Fraenkel, D. G.: Yeast hexokinase mutants. J. Biol. Chem. 252 (1977) 4443–4444

    Google Scholar 

  13. Walsh, R. B.; Kawasaki, G.; Fraenkel, D. G.: Cloning of genes that complement yeast hexokinase and glucokinase mutants. J. Bacteriol. 154 (1983) 1002–1004

    Google Scholar 

  14. Kopetzki, E.; Entian, K. D.: Glucose repression and hexokinase isoenzymes in yeast. Eur. J. Biochem. 146 (1985) 657–662

    Google Scholar 

  15. Fukuda, Y.; Yamaguchi, S.; Hashimoto, H.; Shimosaka, M.; Kimura, A.: Cloning of glucose phosphorylating genes in S. cerevisiae by the χμ-method and application to ATP production. Agric. Biol. Chem. 48 (1984) 2877–2881.

    Google Scholar 

  16. den Hollander, J. A.; Brown, T. R.; Ugurbil, K.; Shulman, R. G.: 13C NMR studies of anaerobic glycolysis in suspensions of yeast cells. Proc. Natl. Acad. Sci. 76 (1979) 6096–6100

    Google Scholar 

  17. Shanks, J. V.; Bailey, J. E.: Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 32 (1989) 1138–1152

    Google Scholar 

  18. Roberts, J. K. M.; Jardetzky, O.: Monitoring of cellular metabolism by NMR. Biochim. Biophys. Acta 639 (1981) 53–70

    Google Scholar 

  19. Gupta, R. K.; Gupta, P.; Moore, R. D.: NMR studies of intracellular metal ions in intact cells and tissues. Ann. Rev. Biophys. Bioeng. 13 (1984) 221–246

    Google Scholar 

  20. Frohlich, K.-U.; Entian, K. D.; Mecke, D.: The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36 (1985) 105–111

    Google Scholar 

  21. Kopetzki, E.; Entian, K. D.; Mecke, D.: Complete nucleotide sequence of the hexokinase PII gene (HXK1) of Saccharomyces cerevisiae. Gene 39 (1985) 95–102

    Google Scholar 

  22. Stachelek, C.; Stachelek, J.; Swan, J.; Botstein, D.; Konigsberg, W.: Identification, cloning and sequence determination of the genes specifying hexokinase A and B from yeast. Nucl. Acids Res. 14 (1986) 945–963

    Google Scholar 

  23. Albig, W.; Entian, K.-D.: Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene 73 (1988) 141–152

    Google Scholar 

  24. Schirch, D. M.; Wilson, J. E.: Rat brain hexokinase: amino acid sequence at the substrate hexose binding site is homologous to that of yeast hexokinase. Arch. Biochem. Biophys. 257 (1987) 1–12

    Google Scholar 

  25. Tamura, J. K.; LaDine, J. R.; Cross, R. L.: The adenine nucleotide binding site on yeast hexokinase PII. J. Biol. Chem. 263 (1988) 7907–7912

    Google Scholar 

  26. Schwab, D. A.; Wilson, J. E.: The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA. J. Biol. Chem. 263 (1988) 3228–3234

    Google Scholar 

  27. Steitz, T. A.; Anderson, W. F.; Fletterick, R. J.; Anderson, C. M.: High resolution crystal structures of yeast hexokinase complexes with substrates, activators, and inhibitors. J. Biol. Chem. 252 (1977) 4494–4900

    Google Scholar 

  28. McDonald, R. C.; Steitz, T. A.; Engelman, D. M.: Yeast hexokinase in solution exhibits a large conformational charge upon binding glucose or glucose 6-phosphate. Biochemistry 18 (1979) 338–342

    Google Scholar 

  29. Entian, K. D.; Frohlich, K.-U.: Saccharomyces cerevisiae mutants provide evidence of hexokinase as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J. Bacteriol. 158 (1984) 29–35

    Google Scholar 

  30. Fernandez, R.; Herrero, P.; Gascon, S.; Moreno, F.: Xylose induced decrease in hexokinase PII activity confers resistance to carbon catabolite repression of invertase in Saccharomyces carlsbergensis Arch. Microb. 139 (1984) 139–142

    Google Scholar 

  31. Bisson, L. F.; Fraenkel, D. G.: Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 80 (1983) 1730–1734

    Google Scholar 

  32. Bisson, L. F.; Fraenkel, D. G.: Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J. Bacteriol. 159 (1984) 1013–1017

    Google Scholar 

  33. McClennan, C. J.; Bisson, L. F.: Glucose uptake in Saccharomyces cerevisiae grown under anaerobic conditions: effect of null mutations in the hexokinase and glucokinase structural genes. J. Bacteriol. 170 (1988) 5396–5400

    Google Scholar 

  34. Moreno, F.; Fernandez, T.; Fernandez, R.; Herrero, P.: Hexokinase PII from Saccharomyces cerevisiae is regulated by charges in the cytosolic Mg2+-free ATP concentration. Eur. J. Biochem. 161 (1986) 565–569

    Google Scholar 

  35. Maitra, P. K.; Lobo, Z.: Molecular properties of yeast glucokinase. Mol. Cell. Biochem. 18 (1977) 21–27

    Google Scholar 

  36. Bisson, L. F.; Fraenkel, D. G.: Transport of 6-Deoxyglucose in Saccharomyces cerevisiae. J. Bacteriol. 155 (1983) 995–1000

    Google Scholar 

  37. Kawasaki, G.; Fraenkel, D. G.: Cloning of yeast glycolysis genes by complementation. Biochem. Biophys. Res. Comm. 108 (1982) 1107–1112

    Google Scholar 

  38. Gancedo, J.-M.; and Gancedo, C.: Concentrations of intermediary metabolites in yeast. Biochimie 55 (1973) 205–211

    Google Scholar 

  39. Okorokov, L. A.; Lichko, L. P.; Kulaev, I. S.: Vacuoles: main compartments of potassium, magnesium and phosphate ions in Saccharomyces carlsbergensis cells. J. Bacteriol. 144 (1980) 661–665

    Google Scholar 

  40. LABONE (TM) NMR1 spectroscopic data analysis software system, revision 2.70. Syracuse University, New Methods Research, Inc. (1985)

  41. Gadian, D. G.; Radda, G. K.; Richards, R. E.; Seley, P. J.: 31P NMR in living tissue: the road from a promising to an important tool in biology. In: Biological applications of magnetic resonances. New York: Academic Press (1979)

    Google Scholar 

  42. Shanks, J. V.; Bailey, J. E.: Elucidation of the cytoplasmic and vacuolar components in the inorganic phosphate region in the 31P NMR spectrum of yeast. Biotechnol. Bioeng. 35 (1990) 1102

    Google Scholar 

  43. Da Silva, N. A.: Host-plasmid interactions and regulation of cloned gene expression in recombinant cells. Ph. D. dissertation, California Institute of Technology (1988)

  44. den Hollander, J. A.; Shulman, R. G.: 13C NMR studies of in vivo kinetic rates of metabolic processes. Tetrahedron 39 (1983) 3529–3538

    Google Scholar 

  45. Ugurbil, K.; Brown, T. R.; den Hollander, J. A.; Glynn, P.; Shulman, R. G.: High-resolution 13C NMR studies of glucose metabolism in E. coli. Proc. Natl. Acad. Sci. 75 (1978) 3742–3746

    Google Scholar 

  46. Shanks, J. V.; Bailey, J. E.: Comparison of wild-type and REG1 mutant Saccharomyces cerevisiae metabolic levels during glucose and galactose metabolism using 31P NMR. Biotechnol. Bioeng. 35 (1990) 395–407

    Google Scholar 

  47. den Hollander, J. A.; Ugurbil, K.; Brown, T. R.; Shulman, R. G.: 31P NMR resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry 20 (1981) 5871–5880

    Google Scholar 

  48. Navon, G.; Shulman, R. G.; Yamane, T.; Eccleshall, T. R.; Lam, K.-B.; Baronofsky, J. J.; Marmur, J.: Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18 (1979) 4487–4499

    Google Scholar 

  49. Gage, R. A.; Van Wijngaarden, W.; Theuvenet, A. P. R.; Borst-Pauwels, G. W. F. H.; Haasnoot, C. A. G.: Localization and identification of the compound causing peak “X” in the 31P NMR spectrum of Saccharomyces cerevisiae. Biochim. Biophys. Acta 804 (1984) 341–347

    Google Scholar 

  50. Ciriacy, M.; Breitenbach, I.: Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J. Bacteriol. 139 (1979) 152–160

    Google Scholar 

  51. Gadian, D. G.: Nuclear magnetic resonance and its application to living systems. Oxford: Oxford University Press 1982

    Google Scholar 

  52. Gupta, R. K.; Moore, R. D.: 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J. Biol. Chem. 255 (1980) 3987–3993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, J.E., Shanks, J.V. 31P NMR and 13C NMR studies of recombinant Saccharomyces cerevisiae with altered glucose phosphorylation activities. Bioprocess Engineering 6, 273–284 (1991). https://doi.org/10.1007/BF00369557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369557

Keywords

Navigation