Skip to main content
Log in

Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of monoglycerides by glycerolysis of olive oil catalyzed by lipases from Candida rugosa, Chromobacterium viscosum and Rhizopus sp. immobilized in a hydrophylic polyurethane foam was investigated. The effect of the amount of aqueous phase used for foam polymerization on the competing reactions of glycerolysis and hydrolysis was studied. The highest monoglyceride production was achieved with the C. rugosa lipase which was thus selected for subsequent studies.

The extent to which hydrolysis and glycerolysis occur and the influence of the initial a w of the system on both reactions were also investigated. In glycerolytic reaction systems, initial rates of fatty acid release were always higher than in hydrolytic systems. At a w values lower than 0.43, hydrolysis was completely repressed, although glycerolysis still occurred. This suggests that hydrolysis of the ester bond in the glyceride, promoted by glycerol, is the first reaction step.

In glycerolysis, initial rates of FFA and DG production increased exponentially with the initial a w of the system.

The lowest total conversion (in terms of % TG consumed) at 48 hours was obtained at intermediate a w values; higher conversions at extreme a w indicated an increase in hydrolytic and glycerolytic rates, at high and low a w respectively.

The yield of MG increased with decreasing a w . The highest yield of MG (∼70%, w/w) was obtained at the lowest a w used (0.23). The initial a w of the reaction system is an important parameter in glycerolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a w :

thermodynamic activity of water

C 12∶0 :

lauric acid

C 14∶0 :

myristic acid

C 18∶1 :

oleic acid

DG:

dediglyceride (s)

FAME:

fatty acid methyl ester (s)

FFA:

free fatty acid (s)

FID:

fire ionization detector

Gly:

glycerol

n :

number of replicates

MG:

monoglyceride (s)

PCA:

principal component analysis

PU:

polyurethane

r :

correlation coefficient

TG:

triglyceride (s)

TO:

triolein

α:

significance level

References

  1. Sonntag, N.O.V.: Glycerolysis of fats and methyl esters — Status, review and critique. J. Am. Oil Chem. Soc. 59 (1982) 795A-802A

    Google Scholar 

  2. Lauridsen, J.B.: Food emulsifier: surface activity, edibility, manufacture, composition, and application J. Am. Oil Chem. Soc. 53 (1976) 400–407

    Google Scholar 

  3. Hoq, M.M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S.: Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. J. Am. Oil Chem. Soc. 61 (1984) 776–781

    Google Scholar 

  4. Schuch, R.; Mukherjee, K.: Lipase-catalyzed reaction of fatty acids with glycerol and acylglycerols. Appl. Microbiol. Biotechnol. 30 (1989) 332–336

    Google Scholar 

  5. Hayes, D.G.; Gulari, E.: Esterification reactions of lipase in reverse micelles. Biotechnol. Bioeng. 35 (1990) 793–801

    Google Scholar 

  6. Hayes, D.G.; Gulari, E.: I-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles. Biotechnol. Bioeng. 38 (1991) 507–517

    Google Scholar 

  7. Akoh, C.; Cooper, C.; Nwosu, C.V.: Lipase G-catalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. J. Am. Oil Chem. Soc. 69 (1992) 257–260

    Google Scholar 

  8. Berger, M.; Schneider, M.P.: Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-racmonoacylglycerols. J. Am. Oil Chem. Soc. 69 (1992) 961–965

    Google Scholar 

  9. van der Padt, A.; Keurentjes, J.T.F.; Sewalt, J.J.W.; van Dam, E.M.; van Dorp, L.J.; van't Riet, K.: Enzymatic synthesis of monoglycerides in a membrane bioreactor with an in-line adsorption column. J. Am. Oil Chem. Soc. 69 (1992) 748

    Google Scholar 

  10. Akoh, C.: Lipase-catalyzed synthesis of partial glyceride. Biotechnol. Lett. 15 (1993) 949–954

    Google Scholar 

  11. Österberg, E.; Ristoff, C.; Holmberg, K.: Lipase catalysed hydrolysis. Tenside, Surfactants, Detergents 25 (1988) 293–297

    Google Scholar 

  12. Österberg, E.; Blomstrom, A.C.; Holmberg, K.: Lipase catalysed transesterification of unsaturated lipids in a microemulsion. J. Am. Oil Chem. Soc., 66 (1988) 1330–1333

    Google Scholar 

  13. Mukesh, D.; Bannerji, R.; Newadkar, R.; Bevinakatti, H.S.: Mathematical modelling of enzymatic butanolysis of vegetable oils. Biocatalysis 8 (1993) 191–199

    Google Scholar 

  14. Zuyi, L.; Ward, O.P.: Stability of microbial lipase in alcoholysis of fish oil during repeated enzyme use. Biotechnol. Lett. 15 (1993) 393–398

    Google Scholar 

  15. Chang, P.S.; Rhee, J.S.: Characteristics of lipase-catalyzed glycerolysis of triglyceride in AOT-isooctane reversed micelles. Biocatalysis 3 (1990) 343–355

    Google Scholar 

  16. Chang, P.S.; Rhee, J.S.; Kim, J-J.: Continuous glycerolysis of olive oil by Chromobacterium viscosum lipase immobilized on liposome in reversed micelles. Biotechnol. Bioeng. 38 (1991) 1159–1165

    Google Scholar 

  17. Ferreira-Dias, S.; Fonseca, M.M.R.: Enzyatic glycerolysis of olive oil: a reaction system with major analytical problems. Biotechnol. Techn. 7 (1993) 447–452

    Google Scholar 

  18. McNeill, G.P.; Shimizu, S.; Yamane, T.: Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride. J. Am. Oil Chem. Soc., 67 (1990) 779–783

    Google Scholar 

  19. McNeill, G.P.; Shimizu, S.; Yamane, T.: High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68 (1991) 1–5

    Google Scholar 

  20. Stevenson, D.E.; Stanley, R.A.; Furneaux, R.H.: Glycerolysis of tallow with immobilised lipase. Biotechnol. Lett. 15 (1993) 1043–1048

    Google Scholar 

  21. Ergan, F.; Trani, M.; André, G.: Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnol. Bioeng. 35 (1990) 195–200

    Google Scholar 

  22. Macrae, A.R.: Interesterification of fats and oils. In Tramper, J., van der Plas, H.C., Linko, P. (Eds.): Biocatalysis in Organic Synthesis, pp. 195–208. Amsterdam: Elsevier Science Publishers B. V. 1985

    Google Scholar 

  23. Goderis, H.L.; Ampe, G.; Feyten, M.P.; Fouwé, B.L.; Guffens, W.M.; Van Cauwenbergh, S.M.; Tobback, P.P.: Lipase-catalyzed ester exchange reactions in organic media with controlled humidity. Biotechnol. Bioeng. 30 (1987) 258–266

    Google Scholar 

  24. Heisler, A.; Rabiller, C.; Hublin, L.: Lipase catalysed isomerisation of 1,2-(2,3)-diglyceride into 1,3-diglyceride. The crucial role of water. Biotechnol. Lett. 13 (1991) 327–332

    Google Scholar 

  25. Kyotani, S.; Fukuda, H.; Nojima, Y.; Yamane, T.: Interesterification of fats and oils by immobilized fungus at constant water concentration. J. Ferm. Technol. 66 (1988) 567–575

    Google Scholar 

  26. Aldercreutz, P.; Mattiasson, B.: Aspects of biocatalyst stability in organic solvents. Biocatalysis 1 (1987) 99–108

    Google Scholar 

  27. Dias, S.F.; Vilas-Boas, L.; Cabral, J.M.S.; Fonseca, M.M.R.: Production of ethyl butyrate by Candida rugosa lipase immobilized in polyurethane. Biocatalysis 5 (1991) 21–34

    Google Scholar 

  28. Lowry, R.R.; Tinsley, I.J.: Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 53 (1976) 470–472

    Google Scholar 

  29. Fukui, S.; Tanaka, A.; Iida, T.: Immobilization of biocatalysts for bioprocesses in organic solvent media. In: Laane, C.; Tramper, J.; Lilly, M.D. (Eds.): Biocatalysis in Organic Media, pp. 21–41. Amsterdam: Elsevier Science Publishers B.V. 1987

    Google Scholar 

  30. Harman, H.H.: Modern Factor Analysis, pp. 133–135. Chicago and London: The Univ. of Chicago Press 1976

    Google Scholar 

  31. Morrison, D.F.: Multivariate Statistical Methods, pp. 226–302. Kogakusha: International Student Edition, McGraw-Hill 1967

    Google Scholar 

  32. Piggott, J.R.; Sherman, K.: Methods to aid interpretation of multidimensional data. In Piggott, J.R. (Ed.): Statistical Procedures in Food Research, pp. 181–232. London & New York: Elsevier Applied Science 1986

    Google Scholar 

  33. Powers, P.P.: Current practices and application of descriptive methods. In Piggott, J.R. (Ed.): Sensory Analysis of Foods, pp. 187–286. London & New York: Elsevier Applied Science 1988

    Google Scholar 

  34. Goldberg, M.: Thomas, D.; Legoy, M-D.: Water activity as a key parameter of synthesis reactions: The example of lipase in biphasic (liquid/solid) media. Enzyme Microb. Technol. 12 (1990) 976–981

    Google Scholar 

  35. Bloomer, S.; Adlercreutz, P.; Mattiasson, B.: Triglyceride interesterification by lipases. 2. Reaction parameters for the reduction of trisaturated impurities and diglycerides in batch reactions. Biocatalysis 5 (1991) 145–162

    Google Scholar 

  36. Bloomer, S.; Adlercreutz, P.; Mattiasson, B.: Kilogram-scale ester synthesis of acyl donor and use in lipase-catalyzed interesterifications. J. Am. Oil Chem. Soc. 69 (1992) 966–973

    Google Scholar 

  37. Valivety, R.H.; Halling, P.J.; Macrae, A.R.: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim. Biophys. Acta 1118 (1992) 218–222

    Google Scholar 

  38. Wisdom, R.A.; Dunnill, P.; Lilly, M.D.: Enzymic interesterification of fats: the effect of non-lipase material on immobilized enzyme activity. Enzyme Microb. Technol. 7 (1985) 567–572

    Google Scholar 

  39. Posorske, L.H.; LeFebvre, G.K.; Miller, C.A.; Hansen, T.T.; Glenvig, B.L.: Process considerations of continuous fat modification with an immobilized lipase. J Am. Oil Chem. Soc. 65 (1988) 922–926

    Google Scholar 

  40. Wang, Y.; Gordon, M.H.: Effect of lipid oxidation products on the esterification activity of an immobilized lipase. J. Agric. Food Chem. 39 (1991) 1693–1695

    Google Scholar 

  41. Touraine, F.; Drapron, R.: Influence of water activity on glyceride and glycol ester synthesis by lipase from Rhizopus arrhizus. Can. Inst. Food Sci. Technol. J. 21 (1988) 255–259

    Google Scholar 

  42. Leung, H.K.: Water activity and other colligative properties of foods. 1983 Winter Meeting American Society of Agricultural Engineers, Paper n∘ 83-6508, Chicago 1983

  43. Halling, P.J.: High-affinity binding of water by proteins is similar in air and in organic solvents. Biochim. Biophys. Acta 1040 (1990) 225–228

    Google Scholar 

  44. Roig, M.G.: Sorption processes. In: Kennedy, J.F., Cabral, J.M.S. (Eds.): Recovery Processes for biological Materials, pp. 369–414. New York: John Willey & Sons 1993

    Google Scholar 

  45. Miller, D.A.; Prausnitz, J.M.; Blanch, H.W.: Kinetics of lipase-catalysed interesterification of triglycerides in cyclohexane. Enzyme Microb. Technol. 13 (1991) 98–103

    Google Scholar 

  46. Tanaka, T; Ono, E; Takinami, K..: US patent, (1981) 4,275,011

  47. Halling, P.J.: Effects of water on equilibria catalysed by hydrolytic enzymes in biphasic reaction systems. Enzyme Microb. Technol. 6 (1984) 513–516

    Google Scholar 

  48. Halling, P.J.: Water activity in biphasic reaction systems. In: Laane, C.; Tramper, J.; Lilly, M.D. (Eds.): Biocatalysis in Organic Media, pp. 125–132. Amsterdam: Elsevier Science Publishers B.V. 1987

    Google Scholar 

  49. Benzonana, G.; Desnuelle, P.: Kinetic study of the action of pancreatic lipase on triglycerides in emulsion. Enzyme action in a heterogeneous medium. Biochim. Biophys. Acta 105 (1965) 121–136

    Google Scholar 

  50. Yamane, T.; Kojima, Y.; Ichiryu, T.; Nagata, M.; Shimizu, S.: Intramolecular esterification by lipase powder in microaqueous benzene: effect of moisture content. Biotechnol. Bioeng. 34 (1989) 838–843

    Google Scholar 

  51. Muderhwa, J.M.; Pina, M.; Graille, J.: Aptitude à la transestérification de quelques lipases régiosélectives 1–3. II.-Taux de conversion et glycérides partiels en fonction de l'activité de l'eau des biocatalysateurs. Oléagineux 43 (1988) 427–433

    Google Scholar 

  52. Svensson, I.; Adlercreutz, P.; Mattiasson, B.: Lipase-catalyzed transesterification of phosphatidylcholine at controlled water activity. J. Am. Oil Chem. Soc. 69 (1992) 986–991

    Google Scholar 

  53. Parvaresh, F.; Robert, H.; Thomas, D.; Legoy, M-D.: Gas phase transesterification reactions catalyzed by lipolytic enzymes. Biotechnol. Bioeng. 39 (1992) 467–473

    Google Scholar 

  54. Bovara, R.; Carrea, G.; Ottolina, G.; Riva, S.: Effects of water activity on V max and K M of lipase catalyzed transesterification in organic media. Biotechnol. Lett. 15 (1993) 937–942

    Google Scholar 

  55. Halling, P.J.: Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech. 6 (1992) 271–276

    Google Scholar 

  56. Kuhl, P.; Halling, P.J.: Salt hydrates buffer water activity during chymotrypsin-catalysed peptide synthesis. Biochim. Biophys. Acta 1078 (1991) 326–328

    Google Scholar 

  57. Kvinttingen, L.; Sjursnes, B.; Anthonsen, T.; Halling, P.: Use of salt hydrates to buffer optimal water level during lipase catalysed synthesis in organic media: a practical procedure for organic chemists. Tetrahedron 48 (1992) 2793–2082

    Google Scholar 

  58. Yang, Z.; Robb, D.A.: Use of salt hydrates for controlling activity of tyrosinase in organic solvents. Biotechnol. Tech. 7 (1993) 37–42

    Google Scholar 

  59. Brady, C.; Metcalfe, L.; Slaboszewski, D.; Frank, D.: Lipase immobilized on a hydrophobic, microporous support for the hydrolysis of fats. J. Am. Oil. Chem. Soc. 65 (1988) 917–921

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are grateful to Prof. L. Beirão da Costa and to Prof. L. Campos, Inst. Sup. de Agronomia (ISA), and to Prof. J.M.S. Cabral, Inst. Sup. Técnico, Lisbon, Portugal, for inspiring discussions and advice, and to Mrs. Marlene Dionísio, ISA, for invaluable help with some of the experimental work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira-Dias, S., da Fonseca, M.M.R. Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess Engineering 12, 327–337 (1995). https://doi.org/10.1007/BF00369510

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369510

Keywords

Navigation