Skip to main content
Log in

Two mathematical models for the development of a single microbial pellet

Part I: Detailed morphological model based on the description of individual hyphae

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A mathematical model for pellet development of filamentous microorganisms is presented, which simulates in detail location and growth of single hyphal elements. The basic model for growth, septation and branching of discrete hyphae is adopted from Yang et al. [2, 23]. Exact solutions to the intracellular mass-balance equations of a growth-limiting key component is given for two types of either branched or unbranched cellular compartments. Furthermore, the growth model was extended in regard to the external mass-balance equations of limiting substrates (oxygen, glucose) under the assumption that the substrates can enter the denser regions of the pellet only diffusively. Penetration of the substrates into the more porous outer regions of the pellet occurs more easily due to microeddies in the surrounding fluid. Chipping of hyphae from the pellet surface by shear forces was included in the model as well. The application of shear forces leads to a marked smoothing of the simulated pellet surface. The development of pellets from spore germination up to late stages with cell-lysis due to shortage of substrates in the pellet centre can be described. The effects of various model parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A i :

algebraic coefficient (i = 1, 2,..., 6)

B i :

algebraic coefficient (i = 1, 2,..., 6)

C i :

mass-concentration of component i (i = O2, S) (gl−1)

C i,crit :

concentration of substance i critical for lysis (i=O2, S) (gl−1)

C i,stop :

concentration of substance i below which cells are inactivated (gl−1)

C(l i,t) :

intracellular concentration of the key component at site l i and time t (gl−1)

C m :

maximal intracellular concentration of the key component (gl−1)

C X :

Concentration of dry biomass (gl−1)

D :

intracellular diffusion coefficient of the key component (m2 h−1)

D max,i :

maximal molecular diffusion coefficient of substrate i (i = O2, S) (m2 h−1)

D eff,i :

effective diffusion coefficient of component i (i = O2) (m2 h−1)

d h :

cross-sectional diameter of hyphae (m)

k :

production coefficient for the key component (h−1)

K s :

Monod coefficient for glucose (gl−1)

k 0 :

Monod coefficient for oxygen (gl−1)

L c :

total length of a compartment (m)

L i :

total length of branch i (i=1, 2, 3) (m)

l i :

position on branch i (i=1, 2, 3)

L m :

maximal length of a segment (m)

m i :

maintenance coefficient of substrate i (h−1)

N m :

maximal number of segments in a compartment

n iR :

number of tips of type i in layer R, i=1, 2

p :

auxiliary variable (see Eq. (7))

P Br :

probability that a hypha is chipped off (%h−1)

pO 2 :

partial pressure of oxygen in the liquid phase (%)

Q :

auxiliary variable (see Eq. (8))

Q i :

uptake rate of substrate i (i = O2, S) (gl−1 h−1)

q :

auxiliary variable (see Eq. (7))

R :

index of radial layer (R=1, 2, 3,..., R max)

r :

radius (m)

r crit :

critical radius, Eq. (15) (m)

r max :

pellet radius (m)

r tip :

distance from the pellet centre to the tip position (m)

r thr :

threshold radius (m)

s :

auxiliary variable (see Eq. (7))

S :

index for glucose

t :

time (h)

v R :

volume of layer R (1)

Y Mi :

observable yield coefficient of biomass on substrate i (gg−1)

Y Xi :

yield coefficient of biomass on substrate i (gg−1)

α i :

actual tip expansion rate (m h−1)

α i,m :

actual maximal extension rate of tip i (i=1, 2) (m h−1)

α 1y :

lysis rate (h−1)

α m :

maximal tip extension rate (m h−1)

β :

auxiliary variable in Eq. (2)

γ :

auxiliary variable in Eq. (3)

κ :

auxiliary variable defined in Eq. (4) (m−1)

λ shear :

shear force parameter

μ R :

overall specific growth rate in layer R (h−1)

μ m :

maximal specific hyphal growth rate (h−1)

ρ :

cell volume density (l cell volume per 1)

ρ crit :

critical cell volume density in Eq. (15)

ρ S :

shear force parameter

ρ X :

cell mass density (g dry weight per 1 wet cells)

ϕ(C i) :

growth kinetics on substrate i

ψ :

proportional factor in Eq. (34) (l g−1)

References

  1. Aynsley, M.; Ward, A. C.; Wright, A. R.: A mathematical model for the growth of mycelial fungi in submerged culture. Biotechnol. Bioeng. 35 (1990) 820–830

    Google Scholar 

  2. Beeftink, H. H.; van den Heuvel, J. C.: Bacterial aggregates of various and varying size and density: A structured model for biomass retention. Chem. Eng. J. (1990) 44, B1-B13

    Google Scholar 

  3. Bhavaraju, S. M.; Blanch, H. W.: A model for pellet breakup in fungal fermentations. J. Ferment. Technol. 54 (1976) 466–468

    Google Scholar 

  4. Braun, S.; Vecht-Lifshitz, S. E.: Mycelial morphology and metabolite production. Trends Biotechnol. 9 (1991) 63–68

    Google Scholar 

  5. Buschulte, T. K.: Mathematische Modellbildung und Simulation von Zellwachstum, Stofftransport und Stoffwechsel in Pellets aus Streptomyceten. Ph. D. thesis, Universität Stuttgart 1991

  6. Buschulte, T. K.; Gilles, E. D.: Modeling and simulation of hyphal growth, metabolism and mass transfer in pellets of Streptomyces. Eur. Congr. Biotech. 5 (1990) 279–282

    Google Scholar 

  7. Buschulte, T. K.; Yang, H.; King, R.; Gilles, E. D.: Formation and growth of pellets of Streptomyces. Biochem. Eng. Stuttgart 2 (1991) 393–396

    Google Scholar 

  8. Cronenberg, C. C. H.: Biofilms investigated with needle-type glucose sensors. Ph. D. thesis, University of Amsterdam 1994

  9. Edwards, N.; Beeton, S.; Bull, A. T.; Merchuk, J. C.: A novel device for the assessment of shear effects on suspended microbial cultures. Appl. Microbiol. Biotechnol. 30 (1989) 190–195

    Google Scholar 

  10. King, R.: Mathematische Modelle myzelförmig wachsender Mikroorganismen. In: Fortschrittsberichte VDI, Reihe 17 Nr. 103. Düsseldorf: VDI-Verlag 1994

    Google Scholar 

  11. Metz, B.: From pulp to pellet. An engineering study on the morphology of moulds. Ph. D. thesis, Delft 1976

  12. Metz, B.; Kossen, N. W. F.: The growth of molds in the form of pellets — a literature review. Biotechnol. Bioeng. 19 (1977) 781–799

    Google Scholar 

  13. Neale, G. H.; Nader, W. K.: Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles. AIChE J. 19 (1973) 112–119

    Google Scholar 

  14. Nielsen, J.: A simple morphologically structured model describing the growth of filamentous microorganisms. Biotechnol. Bioeng. 41 (1993) 715–727

    Google Scholar 

  15. Prosser, J. I.; Tough, A. J.: Growth mechanism and growth kinetics of filamentous microorganisms. Crit. Rev. Biotech. 10 (1991) 253–274

    Google Scholar 

  16. van Suijdam, J. C.; Hols, H.; Kossen, N. W. F.: Unstructured model for growth of mycelial pellets in submerged cultures. Biotechnol. Bioeng. 24 (1982) 177–191

    Google Scholar 

  17. Vecht-Lifshitz, S. E.; Magdassi, S.; Braun, S.: Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnol. Bioeng. 35 (1990) 890–896

    Google Scholar 

  18. Villadsen, J. V.; Stewart, W. E.: Solution of boundary-value problems by orthogonal collocation. Chem. Eng. Sci. 22 (1967) 1483–1501

    Google Scholar 

  19. Viniegra-González, G.; Saucedo-Castañeda, G.: Symmetric branching model for the kinetics of mycelial growth. Biotechnol. Bioeng. 42 (1993) 1–10

    Google Scholar 

  20. Whitaker, A.: Fungal pellets — present and potential applications. Int. Ind. Biotechnol., June/July (1987) 285–289

  21. Wittler, R.; Baumgartl, H.; Lübbers, D. W.; Schügerl, K.: Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements, Biotechnol. Bioeng. 28 (1986) 1024–1036

    Google Scholar 

  22. Yang, H.; Reichl, U.; King, R.; Gilles, E. D.: Measurement and simulation of the morphological development of filamentous microorganisms. Biotechnol. Bioeng. 39 (1992) 44–48

    Google Scholar 

  23. Yang, H.; King, R.; Reichl, U.; Gilles, E. D.: Mathematical model for apical growth, septation and branching of mycelial microorganisms. Biotechnol. Bioeng. 39 (1992) 49–58

    Google Scholar 

  24. Whitaker, A.; Long, P. A.: Fungal pelleting. Proc. Biochem. (1973) 27–31

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank the Deutsche Forschungsgemeinschaft (DFG) for financially supporting parts of this work.

We thank the Deutsche Forschungsgemeinschaft (DFG) for financially supporting parts of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerhoff, J., Tiller, V. & Bellgardt, K.H. Two mathematical models for the development of a single microbial pellet. Bioprocess Engineering 12, 305–313 (1995). https://doi.org/10.1007/BF00369507

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369507

Keywords

Navigation