Skip to main content
Log in

Verification of fractal growth models of the sponge Haliclona oculata (Porifera) with transplantation experiments

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The growth form of the sponge Haliclona oculata is to a significant extent determined by the environmental conditions in which the form emerges. One of the main environmental parameters affecting the growth form is exposure to water movement. In this study, a morphological growth model is used to simulate the effect on the growth process of a change in exposure to water movement. Predictions based on the model are verified by experiments in which sponges from a sheltered growth site are transplanted to an exposed site, and vice versa. The effect of the transplantation on growth forms is determined by morphological comparisons. By combining the morphological simulation model with interpretation of growth forms, it becomes possible to use the growth form of H. oculata for bio-monitoring purposes. This form reflects the environmental conditions governing the growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Barthel, D. (1991). Influence of different current regimes on the growth form of Halichondria panicea Pallas. In: Reitner, J., Keupp, H. (eds.) Fossil and recent sponges. Springer-Verlag, Berlin, p. 387–394

    Google Scholar 

  • Bidder, G. P. (1923). The relation of the form of a sponge to its currents. Q. Jl microsc. Sci. 67: 293–323

    Google Scholar 

  • Brien, P., Lévi, C., Sara, M., Tuzet, O., Vacelet, J. (1973). Traité de zologie, anatomie, systématique, biologie, Tome III Spongiares, fascicule 1. Masson et Cie Editeurs, Paris

    Google Scholar 

  • de Kluijver, M. J. (1989). Sublittoral hard substrate communities of the Southern Delta area, SW Netherlands. Bijdr. Dierk. 59: 141–158

    Google Scholar 

  • de Weerdt, W. H. (1981). Transplantation experiments with caribbean Millepora species (Hydrozoa, Coelenterata), including some ecological observations on growth forms. Bijdr. Dierk. 51: 1–19

    Google Scholar 

  • Fujikawa, H., Matsushita, M. (1989). Fractal growth of Bacillus subtilis on agar plates. J. phys. Soc. Japan 58: 3875–3878

    Google Scholar 

  • Graus, R. R. (1977). Investigation of coral growth adaptations using computer modeling. In: Taylor, D. L. (ed.) Proceedings of the third international coral reef symposium, Vol. II. Rosenthiel School of Marine and Atmospheric Sciences, Miami, p. 463–469

    Google Scholar 

  • Graus, R. R., Macintyre, I. G. (1982). Variation in growth forms of the reef coral Montastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. Smithson. Contr. mar. Sci. 12: 441–464

    Google Scholar 

  • Kaandorp, J. A. (1991a). Modelling growth forms of sponges with fractal techniques. In: Crilly, A. J., Earnshaw, R. A., Jones, H. (eds.) Fractals and chaos. Springer-Verlag, Berlin, p. 181–196

    Google Scholar 

  • Kaandorp, J. A. (1991b). Modelling growth forms of the sponge Haliclona oculata (Porifera; Demospongiae) using fractal techniques. Mar. Biol. 110: 203–215

    Google Scholar 

  • Lindenmayer, A. (1968). Mathematical models for cellular interactions in development. J. theor. Biol. 18: 280–299

    Google Scholar 

  • Matsuyama, T., Sogawa, M., Nakagawa, Y. (1989). Fractal spreading growth of Serratia marcescens which produces surface active exolipids. Fedn eur. microbiol. Soc. (FEMS) Lett. 61: 243–246

    Google Scholar 

  • Nakamori, T. (1988). Skeletal growth model of the dendritic hermatypic corals limited by light shelter effect. In: Choat, J. H., et al. (ed.) Proceedings of the 6th International Coral Reef Symposium, Vol. III. Sixth International Symposium Executive Committee, Townsville, p. 113–118

    Google Scholar 

  • Prusinkiewicz, P., Lindenmayer, A. (1990). The algorithmic beauty of plants. Springer-Verlag, Berlin

    Google Scholar 

  • Sander, L. M. (1986). Fractal growth processes. Nature, Lond. 322: 789–793

    Google Scholar 

  • Stanley, H. E., Ostrowsky, N. (1987). On growth and form: fractal and non-fractal patterns in physics. Martinus Nijhoff, Boston

    Google Scholar 

  • Vogel, S. (1983). Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Vogel, S., Bretz, W. L. (1971). Interfacial organisms: passive ventilation in the velocity gradients near surfaces. Science, N.Y. 175: 210–211

    Google Scholar 

  • Warburton, F. E. (1960). Influence of currents on form of sponges. Science, N.Y. 132: 89

    Google Scholar 

  • Wiedenmayer, F. (1977). Shallow-water sponges of the western Bahamas. Birkhäuser Verlag, Basel

    Google Scholar 

  • Witten, T. A., Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47: 1400–1403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Lube

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaandorp, J.A., de Kluijver, M.J. Verification of fractal growth models of the sponge Haliclona oculata (Porifera) with transplantation experiments. Marine Biology 113, 133–143 (1992). https://doi.org/10.1007/BF00367647

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367647

Keywords

Navigation