Skip to main content
Log in

Fracture mechanisms of poly(methyl methacrylate) under static torsion in alcohol environments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Static torsion tests of poly(methyl methacrylate) were conducted in several alcohol environments at room temperature. The critical torsional stress for crazing and/or cracking increased with increasing molar volume of alcohol, and was not correlated with the solubility parameter, nor with equilibrium solubility as reported in previous results on n-alkanes. Crazing stresses in alcohols were generally lower than those in alkanes. According to Fourier transform-infrared microscopy of the surface scratch made in several environments, both in ethanol and in 1 -butanol, some absorptions were detected at 3450–3650 cm−1, probably due to the hydroxyl group of these alcohols caught by hydrogen bonding to oxygen of the carbonyl group in the side chain, whereas in other environments (1 -octanol, n-hexane, and air) there were no absorptions in this region of wave number. These results suggest that at a flaw tip strained under stress, penetrating alcohol molecules are chemically adsorbed in a cluster, which breaks a weak bond (e.g. dipole interaction) between the polymer chains and, as a result, facilitates craze formation and breakdown leading to brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Kambour, J. Polym. Sci. Macromol. Rev. 7 (1973) 1.

    Article  Google Scholar 

  2. E. J. Kramer, in “Developments in Polymer Fracture”, edited by E. H. Andrews (Applied Science, London, 1979) p. 55.

    Google Scholar 

  3. R. P. Kambour, E. E. Romagosa and C. L. Gruner, Macromolecules 5 (1972) 335.

    Article  CAS  Google Scholar 

  4. R. P. Kambour, C. L. Gruner and E. E. Romagosa, J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 1879.

    Article  CAS  Google Scholar 

  5. P. I. Vincent and S. Raha, Polymer 13 (1972) 283.

    Article  CAS  Google Scholar 

  6. C. H. M. Jacques and M. G. Wyzgoski, J. Appl. Polym. Sci. 23 (1979) 1153.

    Article  CAS  Google Scholar 

  7. Y. W. Mai, J. Mater. Sci. 21 (1986) 904.

    Article  CAS  Google Scholar 

  8. M. Kawagoe and M. Kitagawa, 22 (1987) 3000.

    Article  CAS  Google Scholar 

  9. P. J. Flory, J. Chem. Phys. 9 (1941) 660.

    Article  CAS  Google Scholar 

  10. M. Kawagoe and M. Kitagawa, J. Mater. Sci. 25 (1990) 1043.

    Article  CAS  Google Scholar 

  11. M. Kawagoe and M. Morita,, 28 (1993) 2347.

    Article  CAS  Google Scholar 

  12. P. Dunn and G. F. Sansom, J. Appl. Polym. Sci. 13 (1969) 1657.

    Article  CAS  Google Scholar 

  13. R. P. Burford and D. R. G. Williams, J. Mater. Sci. 14 (1979) 2881.

    Article  CAS  Google Scholar 

  14. M. G. Wyzgoski and G. E. Novak, 22 (1987) 1715.

    Article  CAS  Google Scholar 

  15. T. A. Michalske and S. W. Freiman, Nature 295 (1982) 511.

    Article  CAS  Google Scholar 

  16. T. A. Michalske and S. W. Freiman, J. Appl. Phys. 56 (1984) 2986.

    Article  Google Scholar 

  17. T. Asahara, N. Tokura, M. Ookawara, J. Kumanotani and S. Senoo (eds.), in “Yozai Handbook” (Kodansha, Tokyo, 1976) (in Japanese).

    Google Scholar 

  18. A. F. M. Barton, Chem. Rev. 75 (1975) 731.

    Article  CAS  Google Scholar 

  19. E. G. Shafrin, in “Polymer Handbook”, edited by J. Brandrup and H. Immergut (Interscience, New York, 1966) III, p. 221.

    Google Scholar 

  20. K. Hirao and M. Tomozawa, J. Amer. Ceram. Soc. 70 (1987) 497.

    Article  CAS  Google Scholar 

  21. N. L. Thomas and A. H. Windle, Polymer 22 (1981) 627.

    Article  CAS  Google Scholar 

  22. M. Kawagoe and S. Nunomoto, 32 (1991) 3130.

    Article  CAS  Google Scholar 

  23. E. H. Andrews, G. M. Levy and J. Willis, J. Mater. Sci. 8 (1973) 1000.

    Article  CAS  Google Scholar 

  24. N. K. Kai (ed.), “Kagaku Binran” (Maruzen, Tokyo, 1975) p. 1320 (in Japanese).

    Google Scholar 

  25. K. Mizutani, Y. Tanaka, M. Ido and M. Tanisaki, J. Soc. Mater. Sci. Jpn 32 (1983) 1102 (in Japanese).

    Article  Google Scholar 

  26. M. Kawagoe and M. Kitagawa, J. Mater. Sci. 23 (1988) 3927.

    Article  CAS  Google Scholar 

  27. J. Shen, C. C. Chen and J. A. Sauer, Polymer 26 (1985) 511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawagoe, M., Morita, M. Fracture mechanisms of poly(methyl methacrylate) under static torsion in alcohol environments. JOURNAL OF MATERIALS SCIENCE 29, 6041–6046 (1994). https://doi.org/10.1007/BF00366891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366891

Keywords

Navigation