Skip to main content
Log in

Genetically engineered resistance to bacterial and fungal pathogens

  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the past 10 years, different strategies have been used to produce transgenic plants that are less susceptible to diseases caused by phytopathogenic fungi and bacteria. Genes from different organisms, including bacteria, fungi and plants, have been successfully used to develop these strategies. Some strategies have been shown to be effective against different pathogens, whereas others are specific to a single pathogen or even to a single pathovar or race of a given pathogen. In this review, we present the strategies that have been employed to produce transgenic plants less susceptible to bacterial and fungal diseases and which constitute an important area of plant biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E. & Ryals, J. 1993 Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proceedings of the National Academy of Sciences of the United States of America 90, 7327–7331.

    Google Scholar 

  • Anzai, H., Yonetyama, K. & Yamaguch, I. 1989 Transgenic tobacco resistant to bacterial disease by the detoxification of a pathogenic toxin. Molecular and General Genetics 219, 492–494.

    Google Scholar 

  • Bailey, J.A. & Mansfield, J.W. 1982 Phytoalexins. New York: John Wiley.

    Google Scholar 

  • Bohlmann, H. 1994 The role of thionins in plant protection. Critical Reviews in Plant Sciences 13, 1–16.

    Google Scholar 

  • Bohlmann, H. & Apel, K. 1987 Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley (Hordeum vulgare L.). Molecular and General Genetics 207, 446–454.

    Google Scholar 

  • Bohlmann, H., Clausen, S., Behnke, S., Giese, H., Hiller, C., Reimann-Phillip, U., Schrader, G., Barkholt, V. & Apel, K. 1988 Leaf-specific thionin of barley—a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO Journal 7, 1559–1565.

    Google Scholar 

  • Boller, T. 1988 Ethylene and the regulation of antifungal hydrolases in plants. In Plant Molecular Cell Biology. ed Mifflin, B. p. 145. Oxford: Oxford University Press.

    Google Scholar 

  • Boman, H.G. & Hulmark, D. 1987 Cell-free immunity in insects. Annual Review of Microbiology 41, 103–126.

    Google Scholar 

  • Bowles, D.J. 1990 Defense-related proteins in higher plants. Annual Review of Biochemistry 59, 873–907.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J. & Broglie, R., 1991 Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 1194–1197.

    Google Scholar 

  • Cammue, B.P.A., Bolle, M.F.C.D., Terras, F.R.G., Proost, P., Damme, J.V., Rees, S.B., Vanserleyden, J. & Broekaert., W.F. 1992 Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. Journal of Biological Chemistry 267, 2228–2233.

    Google Scholar 

  • Carmona, M.J., Molina, A., Fernández, J.A., López-Fando, J.J. & García-Olmedo, F. 1993 Expression of the alfa-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant Journal 3, 457–462.

    Google Scholar 

  • Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. & Tempst, P. 1989 Apidaecins: antibacterial peptides from honey-bees. EMBO Journal 8, 2387–2391.

    Google Scholar 

  • Christensen, B., Fink, J., Merrifield, R.B. & Mauzerall, D. 1988 Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proceedings of the National Academy of Sciences of the United States of America 85, 5072–5076.

    Google Scholar 

  • Cruickshank, I.A.M. 1962 Studies on phytoalexins IV. The antimicrobial spectrum of pisatin. Austrian Biological Sciences 15, 147–159.

    Google Scholar 

  • Cutt, J.R., Harpster, M.H., Dixon, D.C., Carr, J.P., Dunsmuir, P. & Klessig, D.F. 1989 Disease response to tobacco mosaic virus in transgenic plants that constitutively express the pathogenesis-related PR Ib gene. Virology 173, 89–97.

    Google Scholar 

  • De LaFuente-Martínez, J.M., Mosqueda-Cano, G., Alvarez-Morales, A. & Herrera-Estrella, L. 1992 Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamylase in transgenic tobacco confers resistance to Pseudomonas syringae pv phaseolicola. Bio/Technology 10, 905–909.

    Google Scholar 

  • DeWit, P.J.G.M. 1992 Molecular characterization of gene-forgene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annual Review of Phytopathology 30, 391–418.

    Google Scholar 

  • Destefano-Beltran, L., Nagpala, P., Jaeho, K., Doods, J.H. & Jaynes, J.M. 1991 Genetics transformation of potato to enhance nutritional value and confer disease resistance. In Plant Gene Research. Molecular Appoaches to Crop Improvement, eds Denis, E.S. & Llewellyn, D.J. pp. 12–82. Vienna: Springer Verlag.

    Google Scholar 

  • Durbin, R.D. 1988 The role of microbial toxins in plant-pathogen specificity. In Physiology and Biochemistry of Plant-microbial Interactions, pp. 96–102. Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  • Durbin, R.D. & Langston-Unkefer, P.J. 1988 The mechanism for self-protection against bacterial phytotoxins. Annual Review of Phytopathology 26, 313–329.

    Google Scholar 

  • Düring, K., Porsch, P., Fladung, M. & Lörz, H. 1993 Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant Journal 3, 587–598.

    Google Scholar 

  • Endo, Y., Tsurugi, K. & Ebert, R.F. 1988. The mechanism of barley toxin: a type 1 ribosome-inactivating protein with RNA N-glycosidase activity. Biochimica and Biophysica Acta 954, 224–226.

    Google Scholar 

  • Fernandez De Caleya, R., Gonzalez, B., Garcia-Olmedo, F. & Carbonero, P. 1972 Susceptibility of phytopathogenic bacteria to wheat purothionons in vitro. Applied Microbiology 23, 998–1000.

    Google Scholar 

  • Flor, H.H. 1946 Genetics of pathogenicity in Melampsora lini. Journal of Agricultural Research 73, 93–112.

    Google Scholar 

  • Flor, H.H. 1971 Current status of the gene for gene concept. Annual Review of Phytopathology 9, 335–357.

    Google Scholar 

  • García-Olmedo, F., Rodríguez-Palenzuela, P., Hernández-Lucas, C., Ponz, F., Maraña, C., Carmona, M.J., López-Fando, J., Fernández, J.A. & Carbonero, P. 1989 The thionins: a protein family that includes purothionins, viscotoxins and crambis. Oxford Surveys in Plant Molecular and Cell Biology 6, 31–60.

    Google Scholar 

  • Gnanamanickam, S.S. & Patil, S.S. 1977 Phaseolotoxin suppresses bacterially induced hypersensitive reaction and phytoalexin synthesis in bean cultivars. Physiological Plant Pathology 10, 169–179.

    Google Scholar 

  • Gross, D.C. 1991. Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annual Review of Phytopathology 29, 247–278.

    Google Scholar 

  • Haberman, E. 1972. Bee and wasp venoms. Science 177, 314–322.

    Google Scholar 

  • Hain, R., Reif, H.-J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stöcker, R.H. & Stenzel, K. 1993 Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156.

    Google Scholar 

  • Jaynes, J.M., Nagpala, P., Destefano-Beltran, L., Huang, J.H., Kim, J., Denny, T. & Centiner, S. 1993 Expression of a cecropin b lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science 89, 43–53.

    Google Scholar 

  • Jaynes, J.M., Xanthopoulos, K.G., Destefano, L. & Doods, J.H. 1987 Increasing bacterial disease resistance in plants utilizing antibacterial genes from insects. Bioessays 6, 263–270.

    Google Scholar 

  • Jollès, P. & Jollès, J. 1984 What's new in lysozyme research? Molecular and Cellular Biochemistry 63, 165–189.

    Google Scholar 

  • Keen, N.T. 1990 Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics 24, 447–463.

    Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I. & Mundy, J. 1991 Biochemical and molecular characterization of three barley seed proteins with antifungal properties. Journal of Biological Chemistry 266, 1564–1573.

    Google Scholar 

  • Lee, J.Y., Boman, A., Sun, C., Andesson, M., Jornvall, H., Mutt, V. & Boman, H.G. 1989 Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proceedings of the National Academy of Sciences of the United States of America 86, 9159–9162.

    Google Scholar 

  • Linthorst, H.J.M. 1991 Pathogenesis-related proteins of plants. Critical Reviews in Plant Sciences 10, 123–150.

    Google Scholar 

  • Linthorst, H.J.M., Meuwissen, R.L.J., Kauffmann, S. & Bol, J.F. 1989 Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell 1, 285–290.

    Google Scholar 

  • Longeman, J., Jach, G., Tommerup, H., Mundy, J. & Schell, J. 1992 Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Biotechnology 10, 305–308.

    Google Scholar 

  • Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Fray, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D. & Tanskley, S.D. 1993 Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1431–1435.

    Google Scholar 

  • Misaghi, I.J. 1982 The role of pathogen-produced toxins in pathogenesis. In Physiology and Biochemistry of Plant-pathogen Interactions, pp. 35–61. New York: Plenum.

    Google Scholar 

  • Mitchell, R.E. 1984 The relevance of non-host-specific toxins in the expression of virulence by pathogens. Annual Review of Phytopathology 22, 215–245.

    Google Scholar 

  • Mosqueda, G., Broeck, G.V.D., Saucedo, O., Bailey, A.M., Alvarez-Morales, A. & Herrera-Estrella, L. 1990 Isolation and characterization of the gene from Pseudomonas syringae p.v. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase. Molecular and General Genetics 222, 461–466.

    Google Scholar 

  • Nordeen, R.O., Sinden, S.L., Jaynes, J.M. & Owens, L.D. 1992 Activity of cecropin sb37 against protoplasts from several plant species and their bacterial pathogens. Plant Sciences 82, 101–107.

    Google Scholar 

  • Paiva, N.L., Edwards, R., Sun, Y., Hrazdina, C. & Nixon, R.A. 1991 Stress responses in alfalfa (Medicago sativa L.). II. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Molecular Biology 17, 653–667.

    Google Scholar 

  • Panopoulos, N.J., Lindgren, P.B., Peet, R.C., Thom, R.F., Hickman, M., Gies, D.R. & Willis, D.K. 1985 Molecular analysis of pathogenicity and virulence in Pseudomonas syringae pathovars. In Advances in Molecular Genetics of the Bacteriaplant Interaction, Vol. 3, pp. 381–419. Ithaca, NY: Cornell University.

    Google Scholar 

  • Patil, S.S., Kolattukudy, P.E. & Dimond, A.E. 1970 Inhibition of ornithine carbamoyltransferase from bean plants by the toxin of Pseudomonas phaseolicola. Plant Physiology 46, 752–753.

    Google Scholar 

  • Ross, A.F. 1961 Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340–358.

    Google Scholar 

  • Sanford, J.C. & Johnston, S.A. 1985 The concept of pathogen derived resistance: deriving resistance genes from the parasite's own genome. Journal of Theoretical Biology 113, 395–405.

    Google Scholar 

  • Schäfer, W., Straney, D., Ciuffetti, L., Etten, H.D.V. & Yoder, O.C. 1989 One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant. Science 246, 247.

    Google Scholar 

  • Schröder, J., Lanz, T. & Schröder, G. 1989 Genes for biosynthesis of stilbene-type phytoalexins. In Plant Gene Transfer, eds Lamb, C. & Beachy, R. pp. 345–348. New York: A.R. Liss.

    Google Scholar 

  • Staskawicz, B.J. & Panopoulos, N.J. 1979 A rapid and sensitive microbiological assay for phaseolotoxin. Phytopathology 69, 663–666.

    Google Scholar 

  • Staskawicz, B.J., Panopoulos, N.J. & Hoogenraad, N.J. 1980 Phytotoxin-insensitive ornithine carbamoyltransferase of Pseudomonas syringae pv. phaseolicola. Basis for immunity to phaseolotoxin. Journal of Bacteriology 142, 720–723.

    Google Scholar 

  • Stein, U. & Blaich, R. 1985 Untersuchungen über stilbenptoduktion und botrytisanfälligkeit bei vitis-arten. Vitis 24, 75–87.

    Google Scholar 

  • Stirpe, F. 1982 On the action of ribosome-inactivating proteins: are plants ribosomes species-specific? Biochemical Journal 202, 279–280.

    Google Scholar 

  • Tomiyama, K. 1992 Hypersensitive cell death: its significance and physiology in plant infection. In The Physiological and Biochemical Basis, eds Asada, Y., Busnell, W.R., Ouchi, S. & Vance, C.P. pp. 329–344. Berlin: Springer Verlag.

    Google Scholar 

  • Trudel, J., Potvin, C. & Asselin, A. 1992 Expression of active hen egg white lisozyme in transgenic tobacco. Plant Science 87, 55–67.

    Google Scholar 

  • Tsugita, A. 1971 Phage lysozyme and other lytic enzymes. In The Enzymes, ed Boyer, P.D., pp. 334–341. New York: Academic Press.

    Google Scholar 

  • Turner, J.G. & Taha, R.R. 1984 Contribution of tabtoxin to the pathogenicity of Pseudomonas syringae pv. tabaci. Physiological Plant Pathology 25, 55–69.

    Google Scholar 

  • VanEtten, H.D., Matthews, D.E. & Matthews, P.S., 1989 Phytoalexin detoxification: importance for pathogenicity and practical implications. Annual Review of Phytopathology 27, 143–164.

    Google Scholar 

  • VanHofsten, P., Faye, I., Kockum, K., Lee, J., Xanthopulos, K.G. & Boman, H.G. 1985 Molecular cloning, cDNA sequencing and chemical synthesis of cecropin B from Hyalophora cecropia. Proceedings of the National Academy of Sciences of the United States of America 82, 2240–2244.

    Google Scholar 

  • Vierheilig, H., Alt, M., Neuhaus, J.M., Boller, T. & Wiemken, A. 1993 Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Molecular Plant-microbe Interactions 6, 261–264.

    Google Scholar 

  • Welle, R., Schroder, G., Schiltz, E., Grisebach, H. & Schroder, J. 1991 Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybeans. European Journal of Biochemistry 196, 423–430.

    Google Scholar 

  • Wessels, J.G.H. & Sietsma, J.H.R. 1982 The fungal cell wall. In Encyclopedia of Plant Physiology, New Series, eds Tanner, W. & Loewus, F.A., pp. 123–138. New York: Springer Verlag.

    Google Scholar 

  • White, R.F. 1979 Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410–412.

    Google Scholar 

  • Zasloff, M. 1987 Magainins, a class of antimicrobial peptides from Xenopus skin: isolation and characterization of two active forms and cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America 84, 5449–5453.

    Google Scholar 

Download references

Authors

Additional information

The authors are with the Departamento de Ingeniería Genética de Plantas. Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Km 9.6 del Libramiento Norte carretera Irapuato-León, Apdo Postal 629, Irapuato, Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-Estrella, L., Simpson, J. Genetically engineered resistance to bacterial and fungal pathogens. World Journal of Microbiology & Biotechnology 11, 383–392 (1995). https://doi.org/10.1007/BF00364613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364613

Key words

Navigation