Skip to main content
Log in

On the recognition of order and disorder

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We compare several algorithms for the recognition of ordered and disordered images. As image sources we use waves of the Belousov-Zhabotinskii reaction coupled to convective motion in a petri dish. This device allows reversibly the generation of periodic (ordered) and aperiodic (disordered) patterns. The best match between the parametric description and the observations is obtained by an “autodifference function”. This function is computed by summing up intensity differences over all pairs of picture elements having a given distance on the picture plane. Then, the minimum of this function is determined upon variation of the distance. This algorithm is not only efficient for the recognition of order and disorder in “machine vision”, but also plausible in biological visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agladze KI, Krinsky VI, Pertsov AM (1984) Chaos in the nonstirred Belousov-Zhabotinskii reaction is induced by waves and stationary dissipative structures. Nature 308:834–835

    Google Scholar 

  • Barnea DI, Silvermann HF (1972) A class of algorithms for fast digital image registration. IEEE Trans C-21:179–186

    Google Scholar 

  • Bense M (1969) Einführung in die informationstheoretische Ästhetik. Rowohlt, Reinbek

    Google Scholar 

  • Birkhoff GD (1931) A mathematical approach to aesthetics. Scientia 50:133–146

    Google Scholar 

  • Brady M (1982) Computational approaches to image understanding. Comput Surv 14:3–71

    Google Scholar 

  • Brooks RA, Greiner R, Binford TO (1979) The ACRONYM model based vision system. In: Proceedings of the International Joint Conference on Artificial Intelligence (Tokyo, Japan), vol 6, pp 105–113

  • Busse HG, Hess B (1973) Information transmission in a diffusion-coupled oscillatory chemical system. Nature 244:203–205

    Google Scholar 

  • Cooley JW, Tuckey JW (1965) An algorithm for the machine computation of complex Fourier series. Math Comput 19:297–301

    Google Scholar 

  • Cooley JW, Lewis PAW, Welch PD (1967) Application of fast Fourier transform to computation of Fourier integrals, Fourier series and correlation integrals, IEEE Trans AU-15:79–84

    Google Scholar 

  • Darling EM, Joseph D (1968) Pattern recognition from satellite altitudes. IEEE Trans SSC-4:38–47

    Google Scholar 

  • Durston AJ (1974) Pacemaker mutants of Dictyostelium discoideum. Develop Biol 38:308–319

    Google Scholar 

  • Ebeling W, Herzel H, Engel-Herbert H (1985) On the entropy of dissipative structures. Z Phys Chem Leipzig 266:253–256

    Google Scholar 

  • Ebeling W, Engel-Herbert H, Herzel H (1986) On the entropy of dissipative and turbulent structures. Ann Phys 43:187–195

    Google Scholar 

  • Gerisch G (1971) Periodische Signale steuern die Musterbildung in Zellverbänden. Naturwissenschaften 9:430–438

    Google Scholar 

  • Glünder H (1986a) Neural computation of inner geometric pattern relations. Biol Cybern 55:239–254

    Google Scholar 

  • Glünder H (1986b) On functional concepts for the explanation of visual pattern recognition. Hum Neurobiol 5:145–155

    Google Scholar 

  • Glünder H, Gerhard A, Platzer H, Hofer-Alfeis J (1984) A geometrical-transformation-invariant pattern recognition concept incorporating elementary properties of neuronal circuits. In: Wein M (ed) Proceedings of the 7th International Conference on pattern recognition. IEEE Comp Soc Press, Silver Spring/MD, pp 1376–1379

    Google Scholar 

  • Haralick RM, Shammugan K, Dinstein I (1973) Textural features for image classification. IEEE Trans SMC-3:610–621

    Google Scholar 

  • Hess B, Markus M (1987) Order and chaos in biochemistry. Trends Biochem Sci 12:45–48

    Google Scholar 

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–204

    Google Scholar 

  • Julesz B, Bergen JR (1983) Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst Techn J 62:1619–1645

    Google Scholar 

  • Kraepelin G, Frank G (1973) Self-synchronization in yeast and other fungi. Int J Chronobiol 1:163–172

    Google Scholar 

  • Leibowitz HW, Post RB (1982) The two modes of processing concept and some implications. In: Beck J (ed) Organization and representations in perception. Erlbaum, Hillsdale/NJ, pp 343–363

    Google Scholar 

  • Markus M, Hess B (1984) Transitions between oscillatory modes in a glycolytic model system. Proc Natl Acad Sci USA 81:4394–4398

    Google Scholar 

  • Marr D, Nishihara HK (1978) Representation and recognition of the spatial organization of three dimensional structures. Proc R Soc London Ser B 200:269–294

    Google Scholar 

  • Marr D, Ullmann S (1981) Directional selectivity and its use in early visual processing. Proc R Soc London Ser B 211:151–180

    Google Scholar 

  • Maser S (1967) Über eine mögliche Präzisierung der Beschreibung ästhetischer Zustände. Grundlagenstud Kybern Geisteswiss 6:101–113

    Google Scholar 

  • Mendès France M (1981) Chaotic curves. In: Cosnard M, Demongeot J, Le Breton A (eds) Rhythms in biology and other fields of application. Springer, Berlin Heidelberg New York Tokyo, pp 354–367

    Google Scholar 

  • Miike H, Ikemoto S, Ochiai K, Hashimoto H, Ebina Y (1984) New dynamic image processing technique for the analysis of texture movement: study of the dissipative structure in the electrodynamic instability of nematic liquid crystal. Jpn J Appl Phys 23:L379-L381

    Google Scholar 

  • Müller SC, Plesser Th, Hess B (1985) Coupling of glycolytic oscillations and convective patterns. In: Rensing L, Jaeger NI (eds) Temporal order. Springer, Berlin Heidelberg New York, pp 194–196

    Google Scholar 

  • Müller SC, Plesser Th, Hess B (1986) Two-dimensional spectrophotometry and pseudo-color representation of chemical reaction patterns. Naturwissenschaften 73:165–179

    Google Scholar 

  • Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans PAMI-6:518–523

    Google Scholar 

  • Platten JK, Legros JC (1984) Convection in liquids. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Powell GE, Percival IC (1979) A spectral entropy method for distinguishing regular and irregular motion in Hamiltonian systems. J Phys A: Math Gen 12:2053–2071

    Google Scholar 

  • Rashevsky N (1960) Mathematical biophysics. II. Dover, New York

    Google Scholar 

  • Reichardt W (1985) The visual system of insects. Processing of optical information. Rev Biol 78:9–42

    Google Scholar 

  • Reichardt W, Guo A (1986) Elementary pattern discrimination (Behavioural experiments with the fly Musca domestica). Biol Cybern 53:285–306

    Google Scholar 

  • Rosenblatt F (1957) The Perceptron, a perceiving and recognizing automation (Project Para) Cornell Aeronautical Lab. Report N. 85-460-1. Ithaca/NY

  • Rosenfeld A, Troy EB (1970) Visual texture analysis. Comput Sci Cent, Univ Maryland, College Park. Techn Rep 70-116

    Google Scholar 

  • Serra J (1982) Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  • Showalter K (1980) Pattern formation in a ferroin-bromate system. J Chem Phys 73:3735–3742

    Google Scholar 

  • Tomchik KJ, Devreotes PN (1981) Adenosine 3′,5′-monophosphate waves in Dictyostelium discoideum: a demonstration of isotope dilution-fluorography. Science 212:443–446

    Google Scholar 

  • Van Dyke M (1982) An album of fluid motion. The Parabolic Press, Stanford, CA

    Google Scholar 

  • Voigt A, Wlocka J (1974) Hilberträume and elliptische Differentialoperatoren. B. I. Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Walgraef D (1984) Pattern formation in chemical systems: the effect of convection. In: Vidal C, Pacault A (eds) Nonequilibrium dynamics in chemical systems. Springer, Berlin Heidelberg New York, pp 114–117

    Google Scholar 

  • Zhabotinskii AM, Zaikin AN (1973) Autowave processes in a distributed chemical system. J Theor Biol 40:45–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. J. Prigogine on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markus, M., Müller, S.C., Plesser, T. et al. On the recognition of order and disorder. Biol. Cybern. 57, 187–195 (1987). https://doi.org/10.1007/BF00364150

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364150

Keywords

Navigation