Skip to main content
Log in

Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The performance of the fly's movement detection system is analysed using the visually induced yaw torque generated during tethered flight as a behavioural indicator. In earlier studies usually large parts of the visual field were exposed to the movement stimuli; the fly's response, therefore, represented the spatially pooled output signals of a large number of local movement detectors. Here we examined the responses of individual movement detectors. The stimulus pattern was presented to the fly via small vertical slits, thus, nearly avoiding spatial integration of local movement information along the horizontal axis of the eye. The stimulus consisted of a vertically oriented sine-wave grating which was moved with a constant velocity either clockwise or counterclockwise. In agreement with the theory of movement detectors of the correlation type, the time-course of the detector signal is modulated with the spatial phase of the stimulus pattern. It can even assume negative values for some time during the response cycle and thus signal the wrong direction of motion. By spatially integrating the response over sufficiently large arrays of movement detectors these response modulations disappear. Finally, one obtains a signal of the movement detection system which is constant while the pattern moves in one direction and only changes its sign when the pattern reverses its direction of motion. Spatial integration thus represents a simple means to obtain a meaningful representations of motion information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    Google Scholar 

  • Anderson SJ, Burr DC (1985) Spatial and temporal selectivity of the human motion detection system. Vision Res 8:1147–1154

    Google Scholar 

  • Baker LB, Braddick OJ (1985) Temporal properties of the short-range process in apparent motion. Perception 14:181–192

    Google Scholar 

  • Baker CL, Cynader MS (1986) Spatial receptive-field properties of direction-selective neurons in cat striate cortex. J Neurophysiol 55:1136–1152

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol 178:477–504

    Google Scholar 

  • Borst A, Bahde S (1986) What kind of movement detector is triggering the landing response of the housefly? Biol Cybern 55:59–69

    Google Scholar 

  • Burr DC (1981) Temporal summation of moving images by the human visual system. Proc R Soc Lond B 211:321–339

    Google Scholar 

  • Chang JJ, Julesz B (1983) Displacement limits, directional anisotropy and direction versus form discrimination in random-dot cinematograms. Vision Res 23:639–646

    Google Scholar 

  • DeVoe RD (1980) Movement sensitivities of cells in the fly's medulla. J Comp Physiol B 8:93–119

    Google Scholar 

  • DeVoe RD, Ockleford EM (1976) Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol Cybern 23:13–24

    Google Scholar 

  • van Doorn AJ, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:179–188

    Google Scholar 

  • van Doorn AJ, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving white noise. Exp Brain Res 45:189–195

    Google Scholar 

  • van Doorn AJ, Koenderink JJ (1984) Spatiotemporal integration in the detection of coherent motion. Vision Res 24:47–53

    Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280

    Google Scholar 

  • Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161:777–783

    Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56:69–87

    Google Scholar 

  • Emerson RC, Citron MC, Vaughn WJ, Klein SA (1987) Nonlinear directionally selective subunits in complex cells of cat striate cortex. J Neurophysiol 58:33–65

    Google Scholar 

  • Felleman DJ, Kaas JH (1984) Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. J Neurophysiol 52:488–513

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2:15–28

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 523–559

    Google Scholar 

  • Holub RA, Morton-Gibson M (1981) Response of visual cortical neurons of the cat to moving sinusoidal gratings: Responsecontrast functions and spatiotemporal interactions. J Neurophysiol 46:1244–1259

    Google Scholar 

  • Kirschfeld K (1972) The visual system of Musca: studies on optics, structure and function. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 61–74

    Google Scholar 

  • Lappin JS, Bell HH (1976) The detection of coherence in moving random-dot patterns. Vision Res 16:161–168

    Google Scholar 

  • Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence of temporospatial properties of visual input. J Neurophysiol 56:1321–1354

    Google Scholar 

  • Mimura K (1972) Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J Comp Physiol 80:409–437

    Google Scholar 

  • Pantle A, Lehmkuhle S, Candill M (1978) On the capacity of directionally selective mechanisms to encode different dimensions of moving stimuli. Perception 7:261–267

    Google Scholar 

  • Pick B (1976) Visual pattern discrimination as an element of the fly's orientation behaviour. Biol Cybern 23:171–180

    Google Scholar 

  • Poggio T, Reichardt W (1976) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophys 9:377–438

    Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z Naturforsch 12b:448–457

    Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communication. Wiley, New York, pp 303–317

    Google Scholar 

  • Reichardt W (1986) Processing of optical information by the visual system of the fly. Vision Res 26:113–126

    Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol 161:533–547

    Google Scholar 

  • Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioural experiments with the fly Musca domestica). Biol Cybern 53:285–306

    Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungsehen (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b:674–689

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuity. Biol Cybern [Suppl] 46:1–30

    Google Scholar 

  • Riehle A, Franceschini N (1984) Research note. Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394

    Google Scholar 

  • Santen JPH van, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1:451–473

    Google Scholar 

  • Santen JPH van, Sperling G (1985) Elaborated Reichardt detectors. J Opt Am A 2:300–321

    Google Scholar 

  • Varjú D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster (Anwendung der Systemtheorie auf Experimente am Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b:724–735

    Google Scholar 

  • Wehrhahn C (1986) Motion sensitive yaw torque responses of the housefly Musca: a quantitative study. Biol Cybern 55:275–280

    Google Scholar 

  • Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybern 51:213–222

    Google Scholar 

  • Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the monkey. J Physiol 236:549–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichardt, W., Egelhaaf, M. Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly. Biol. Cybern. 58, 287–294 (1988). https://doi.org/10.1007/BF00363937

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363937

Keywords

Navigation