Skip to main content
Log in

The loss of intestinal transport capacity following preincubation in sodium-free media in vitro

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Zusammenfassung

Vorinkubation (30 min) von Rattendünndarmschnitten in Na+-freiem Puffer zerstört ihre Fähigkeit, L-Phenylalanin gegen einen Konzentrationsgradienten zu transportieren. Werden die Na+-Ionen durch Kalium, Lithium oder Tris-Ionen ersetzt, tritt ein völliger Verlust der Transportfähigkeit ein; werden sie dagegen durch Cholin-Ionen ersetzt, tritt eine weniger starke Schädigung ein. Vorinkubation in einem 1:1-Gemisch von Krebs-Puffer und K+-ersetztem Puffer bewirkt ebenfalls eine Verminderung der Transportfähigkeit.

Diese Ergebnisse können einem Mangel an verstoffwechselbarem Substrat innerhalb der Zelle während der Abwesenheit von Natrium nicht zugeschrieben werden. Sie lassen sich am besten durch die Annahme erklären, daß während der Vorinkubation die Natrium-Pumpe, die eng mit der Aminosäureaufnahme gekoppelt ist, zerstört wird. Wenn das Gewebe nach dieser Vorinkubation in Na+-haltige Lösung gebracht wird, dringen diese Ionen in die Zellen ein und zerstören die charakteristischen Eigenschaften der Zellmembran. Die Permeabilität des Gewebes für markiertes Natrium ist nach einer Vorinkubation in K+-reichem Medium signifikant größer gegenüber Kontroll-Versuchen. Entsprechend verhält sich die Permeabilität von Mannit.

Der Verlust der Transportfähigkeit nach Vorinkubation in Na+-freier Lösung scheint artspezifisch zu sein; Im Gegensatz zu Schnittpräparaten der Ratte und der Maus zeigen solche des Kaninchendünndarms diese Erscheinungen nicht. Nach Angaben der Literatur findet sich ein solcher Verlust der Transportfähigkeit ebenfalls nicht bei Dünndarmpräparaten der Kröte und des Goldhamsters. Da alle diese Gewebe ein Strophanthin-empfindliches Natrium-Transportsystem besitzen, wird diese enge Kopplung zwischen Empfindlichkeit gegenüber Na+-freier Vorinkubation und Unempfindlichkeit gegenüber Strophanthin als weiterer Hinweis für unterschiedliche Natrium-Transportsysteme bei verschiedenen Tierarten gewertet.

Summary

Preincubation of excised rings of rat intestine in sodium-free buffer for 30 min destroys the capacity of the tissue to absorb L-phenylalanine against a concentration gradient during a subsequent incubation in the presence of sodium ions. Use of potassium, lithium, or Tris ions as substituents for sodium causes complete loss of transport capacity, whereas the use of choline ions is somewhat less damaging. Preincubation in a 1:1 mixture of Krebs buffer and Na+-free, K+-substituted buffer also induces a reduction in subsequent transport capacity.

These results cannot be assigned to lack of metabolisable substrate within the cells when sodium is absent from the preincubation medium. They are best explained by suggesting that the sodium pump which is intimately linked with amino-acid accumulation within the epithelial cells is destroyed during the preincubation. Then when the tissue is replaced in a Na+-containing solution, the cells are flooded with these ions, which may then be responsible for the destruction of the characteristic properties of the cell membrane. Permeation of the tissue with radioactive sodium after a preincubation in K+-rich medium is significantly greater than in control samples, as is the penetration of mannitol.

This loss of activity following preincubation in the absence of sodium ions is partly species-specific; it is present in the rat and the mouse, and absent from the rabbit intestine (and according to the literature, from the toad and the hamster). Since the species from which the effect is absent have intestines possessing ouabainsensitive sodium pumps that are involved in non-electrolyte transport, it is suggested that this correlation between sensitivity to Na+-free preincubation and lack of susceptibility to ouabain provides further evidence for qualitative differences between the sodium-pump mechanisms in different animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Baillien, M., et E. Schoffeniels: Origine des potentiels bioélectriques de l'épithélium intestinal de la tortue grecque. Biochim. biophys. Acta (Amst.) 53, 537–548 (1961).

    Google Scholar 

  2. Balasch, J., A. Stampa, and F. Ponz: Inhibition of the oxygen uptake of rat jejunum by Na+ deficiency in the medium. Rev. esp. Fisiol. 21, 65–70 (1965).

    Google Scholar 

  3. Berg, G. G., and B. Chapman: The sodium and potassium activated ATPase of intestinal epithelium. I. Location of enzymatic activity in the cell. J. cell. comp. Physiol. 65, 361–372 (1965).

    Google Scholar 

  4. —, and J. Szekerczes: The sodium and potassium activated ATPase. II. Comparative study of intestinal epithelium and red cells. J. cell. Physiol. 67, 487–500 (1966).

    Google Scholar 

  5. Bihler, I., and R. K. Crane: The influence of several cations and anions on the active transport of sugars in vitro by various preparations of hamster small intestine. Biochim. biophys. Acta (Amst.) 59, 78–93 (1962).

    Google Scholar 

  6. Binder, H. J., M. Boyer, H. M. Spiro, and R. P. Spencer: Species differences in the response of amino acid transport to ouabain and a sodium-free medium. Comp. Biochem. Physiol. 18, 83–89 (1966).

    Google Scholar 

  7. Bosačková, J., and R. K. Crane: Cation inhibition of active sugar transport and 22Na influx into hamster small intestine in vitro. Biochim. biophys. Acta (Amst.) 102, 423–435 (1965).

    Google Scholar 

  8. Crane, R. K.: Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc. 21, 891–895 (1962).

    Google Scholar 

  9. — G. Forstner, and A. Eichholz: An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim. biophys. Acta (Amst.) 109, 467–477 (1965).

    Google Scholar 

  10. Csáky, T. Z., and Y. Hara: Inhibition of active intestinal sugar transport by digitalis. Amer. J. Physiol. 209, 467–472 (1965).

    Google Scholar 

  11. —, and M. Thale: Effect of ionic environment on intestinal sugar transport. J. Physiol. (Lond.) 151, 59–65 (1960).

    Google Scholar 

  12. —, and L. Zollicoffer: Ionic effect on intestinal transport of glucose in the rat. Amer. J. Physiol. 198, 1056–1058 (1960).

    Google Scholar 

  13. Dawson, R. M. C., D. C. Elliot, W. H. Elliott, and K. M. Jones: Data for biochemical research. Oxford: Clarendon Press 1959.

    Google Scholar 

  14. Dettmer, D., F. Müller u. E. Kuhfahl: Beziehung zwischen aktivem Monosaccharidtransport und ATPasen-Aktivität in der Dünndarmmukosa von Ratten. Naturwissenschaften 53, 528–529 (1966).

    Google Scholar 

  15. Esposito, G., A. Faelli e V. Capraro: Sul meccanismo del trasporto transepiteliale di aminoacidi e suoi rapporti col trasporto contemporaneo di sodio e di glicoso in un preparato intestinale in vitro. Arch. Sci. biol. 48, 341–356 (1964).

    Google Scholar 

  16. Gilles-Baillien, M., and E. Schoffeniels: Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch. int. Physiol. Biochim. 73, 355–357 (1965).

    Google Scholar 

  17. Hollands, B. C. S., and M. W. Smith: Phosphatases of the goldfish intestine. J. Physiol. (Lond.) 175, 31–37 (1964).

    Google Scholar 

  18. Jéquier, J.-Cl., J. W. L. Robinson, and J.-P. Felber: Reversible and irreversible mechanisms for intestinal amino-acid absorption. Biochem. biophys. Res. Commun. 18, 507–511 (1965).

    Google Scholar 

  19. Kinter, W. B., and T. H. Wilson: Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine. J. Cell. Biol. 25, 19–39 (1965).

    Google Scholar 

  20. Kipnis, D. M., and J. E. Parrish: Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (α-aminoisobutyric acid) transport in striated muscle. Fed. Proc. 24, 1051–1059 (1965).

    Google Scholar 

  21. Lluch, M., and F. Ponz: Ouabain-Na+ relation in the inhibition of the active transport of sugars by the intestine in vivo. Rev. esp. Fisiol. 20, 185–191 (1964).

    Google Scholar 

  22. Lyon, I., and R. K. Crane: An effect of ouabain on glucose-dependent increment of transmural potential of rat small intestine. Biochim. biophys. Acta (Amst.) 126, 146–153 (1966).

    Google Scholar 

  23. Robinson, J. W. L.: Les relations entre les ions de sodium et l'absorption intestinale d'acides aminés. Biochim. biophys. Acta (Amst.) 126, 61–72 (1966).

    Google Scholar 

  24. — J.-A. Antonioli, and V. Mirkovitch: The intestinal response to ischaemia. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 178–191 (1966).

    Google Scholar 

  25. —, and J.-P. Felber: Compartments of the uptake of amino-acids by intestinal fragments during in vitro incubation. Gastroenterologia (Basel) 104, 335–342 (1965).

    Google Scholar 

  26. The effect of tissue ageing on intestinal uptake of amino-acids in vitro. Gastroenterologia (Basel) 105, 17–26 (1966).

    Google Scholar 

  27. —, et A. Vannotti: Étude de l'absorption intestinale des acides aminés en physiopathologie. Schweiz. med. Wschr. 96, 1002–1007 (1966).

    Google Scholar 

  28. Rosenberg, I. H., A. L. Coleman, and L. E. Rosenberg: The role of sodium ions in the transport of amino acids by the intestine. Biochim. biophys. Acta (Amst.) 102, 161–171 (1965).

    Google Scholar 

  29. Schlenker, J. D., and J. W. L. Robinson: Studies on the permeability barrier to amino-acid penetration of the intestinal mucosa during incubation in vitro in a Na+-free buffer. Pflügers Arch. ges. Physiol. 294, 169–181 (1967).

    Google Scholar 

  30. Schultz, S. G., R. E. Fuisz, and P. F. Curran: Amino acid and sugar transport in rabbit ileum. J. gen. Physiol. 49, 849–866 (1966).

    Google Scholar 

  31. —, and R. Zalusky: Ion transport in isolated rabbit ileum. The interaction between active sodium and active sugar transport. J. gen. Physiol. 47, 1043–1059 (1964).

    Google Scholar 

  32. Siekevitz, P.: Origin and functional nature of microsomes. Fed. Proc. 24, 1153–1155 (1966).

    Google Scholar 

  33. Skou, J. C.: Enzymatic basis for active transport of Na+ and K+ across cell membranes. Physiol. Rev. 45, 596–617 (1965).

    Google Scholar 

  34. Smith, M. W.: The in vitro absorption of water and solutes from the intestine of goldfish, Carassius auratus. J. Physiol. (Lond.) 175, 38–49 (1964).

    Google Scholar 

  35. Vogel, G., u. W. Kröger: Die Bedeutung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucoseund PAH-Transport. Pflügers Arch. ges. Physiol. 288, 342–358 (1966).

    Google Scholar 

  36. Wardlaw, A. C., and G. Van Belle: Statistical aspects of the mouse diaphragm test for insulin. Diabetes 13, 622–633 (1964).

    Google Scholar 

  37. Whittam, R.: The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem. J. 84, 110–118 (1962).

    Google Scholar 

  38. Whittembury, G.: Sodium extrusion and potassium uptake in guinea pig kidney cortex slices. J. gen. Physiol. 48, 699–717 (1965).

    Google Scholar 

  39. — Movimiento de sodio y potasio en células renales. Acta cient. venez. 16, 140–141 (1965).

    Google Scholar 

  40. -- Sodium extrusion and sodium for potassium exchange in kidney cells. Abstr. No. 309, 2nd. Int. Congr. Biophys., Vienna 1966.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Deutsche Forschungsgemeinschaft, during the tenure of a visiting fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J.W.L. The loss of intestinal transport capacity following preincubation in sodium-free media in vitro. Pflügers Archiv 294, 182–200 (1967). https://doi.org/10.1007/BF00363605

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363605

Keywords

Navigation