Skip to main content
Log in

R curves for energy dissipative materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper focuses on the theoretical simulation of fracture and stable crack growth of specimens with non-local damage. The first law of thermodynamics allows the identification or definition of appropriate crack-driving forces. The results are compared with recent ideas on defining tearing resistance for uncontained yield through the energy dissipation rate. A hypothesis regarding the conversion of mechanical into thermal energies within the non-local damage region is formulated to model the fracture behaviour of energy dissipative materials with rising crack resistance characteristics. The material's capacity to develop non-local damage is assumed to decrease with the actual damage level. This decrease relates linearly with the remaining resources of the material in dissipating energy. The hypothesis, which proposes a square root function for theoretical J-R curves, is verified by the regression analysis of experimental data regarding a European round-robin test of different steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tvergaard and A. Needleman, Acta Metall. 32 (1984) 157.

    Article  Google Scholar 

  2. P. J. Budden, and M. R. Jones, Fatigue Fract. Engng. Mater. Struct. 14 (1991) 469.

    Article  Google Scholar 

  3. P. Will, Fortschrittberichte VDI Reihe 18 (1988) 56.

    Google Scholar 

  4. C. E. Turner, in: “Post-yield Fracture Mechanics”, edited by D. G. H. Latzko, C. E. Turner, J. D. Landes, D. E. McCabe and T. K. Hellen, (Elsevier, Barking, 1984) p. 25.

    Google Scholar 

  5. S. Aoki, K. Kishimoto, M. Sakata, J. Appl. Mech. 48 (1981) 825.

    Article  Google Scholar 

  6. O. Kolednik, ESIS Newsletter No. 20 (1992/93) 12.

    Google Scholar 

  7. C. E. Turner, ESIS Newsletter No. 19 (1992) 10.

    Google Scholar 

  8. T. L. Anderson, “Fracture Mechanics” (CRC Press, Boca Raton, 1991).

    Google Scholar 

  9. M. Sakai, J. I. Yoshimura, Y. Goto, M. Inagaki, J. Amer. Ceram. Soc. 71 (1988) 609.

    Article  CAS  Google Scholar 

  10. C. L. Chow and T. J. Lu, Int. J. Fract. 50 (1991) 79.

    Article  Google Scholar 

  11. R. N. Stevens, F. Guiu, Proc. R. Soc. Lond. A435 (1991) 169.

    Article  Google Scholar 

  12. M. F. Mecklenburg, J. A. Joyce, P. Albrecht, in “Nonlinear fracture mechanics” Vol. II, “Elastic-plastic fracture”, edited by J. D. Landes, A. Saxena and J. G. Merkle (ASTM STP 995, 1989) 594.

  13. M. L. Braga, PhD thesis, Faculty of Engineering, Imperial College, University of London, 1992.

  14. D. B. Marshall, M. V. Swain, J. Amer. Ceram. Soc. 71 (1988) 399.

    Article  CAS  Google Scholar 

  15. P. Will, B. Michel, P. Kuntzsch, cfiBer./DKG 70 (1993) 23.

    CAS  Google Scholar 

  16. P. Will, Fortschrittsberichte der DKG 3 (1992) 133.

    Google Scholar 

  17. B. Hayes, et al. Final report of a European round-robin, TWI Report No. 8029/6/90, The Welding Institute, Abington, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, P. R curves for energy dissipative materials. JOURNAL OF MATERIALS SCIENCE 29, 2335–2340 (1994). https://doi.org/10.1007/BF00363423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363423

Keywords

Navigation