Skip to main content
Log in

Transmural gradients of glycolytic enzyme activities in left ventricular myocardium

II. Prolonged hemorrhagic hypotension

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Zusammenfassung

Es wurden zwölf Versuche an gesunden, narkotisierten und konstant ventilierten Hunden durchgeführt. Blutdruck, Säure-Basenhaushalt, Sauerstoffversorgung und Lactat/Pyruvat-Stoffwechsel wurden mittels Blutanalysen verfolgt. Die Aktivitäten von neun glykolytischen Enzymen wurden im linksventrikulären Myokard gemessen. Mit der Reservoir-Technik wurde ein vermutlich irreversibler hämorrhagischer Schock erzeugt und seine metabolischen Auswirkungen auf die Blutparameter registriert. Die Analyse des coronarvenösen Blutes ergab keine Anhaltspunkte für einen Sauerstoffmangel des Herzens. Die Enzymaktivitäten waren nach dem Schock mehrheitlich erhöht. Ausnahmen bildeten Pyruvatkinase, LDH und α-HB-DH. Zwischen den Entnahmestellen traten vor allem in der Innenschicht Aktivitätsgradienten zutage. Das im Normalzustand gefundene Muster der transmuralen Aktivitätsgradienten war nach dem Schock gestört. Die Befunde sprechen gegen einen Sauerstoffmangel als Ursache des Herzversagens im Schock. Sie lassen sich als funktionelle Folgen von Strukturveränderungen interpretieren, die mit Wirkungen der Katecholamine oder mit toxischen Substanzen aus der Peripherie zusammenhängen könnten.

Summary

Twelve experiments were performed on healthy, anesthetized dogs on constant ventilation. Blood pressure, acid-base status, oxygen supply and lactate/pyruvate metabolism were monitored in the blood. The activities of nine glycolytic enzymes were assayed in left ventricular myocardium. A presumably irreversible state of hemorrhagic shock was produced by the reservoir technique and its metabolic sequels recorded in the blood. The analysis of coronary sinus blood did not reveal an oxygen deficit of the heart. The majority of the enzymes assayed showed higher activities following shock. Exceptions were pyruvate kinase, LDH and α-HB-DH. Activity differences between sampling sites appeared following shock especially in the inner layer of the left ventricle. The pattern of transmural activity gradients previously found in the normal state was disturbed. The findings are against an oxygen deficit as a cause of cardiac deterioration in shock, suggesting structural derangements possibly due to catecholamine effects or toxic substances of peripheral origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ashford, T., C. Palmerio, and J. Fine: Structural analogue in vascular muscle to the functional disorder in refractory traumatic shock and reversal by corticosteroid: Electron microscopic evaluation. Ann. Surg. 164, 575 (1966).

    Google Scholar 

  2. Bartel, J., J. Dieckhoff, S. Iwanoff u. R. Koch: Die Enzymaktivitäten (ALD, GOT, GPT, LDH, MDH) nach experimenteller Hypoxie und im Schock durch Hämorrhagie und Endotoxinintoxikation. Dtsch. Gesundh.-Wes. 20, 2297 (1965).

    Google Scholar 

  3. Brand, E. D., and A. M. Lefer: Myocardial depressant factor in plasma from cats in irreversible post-oligemic shock. Proc. Soc. exp. Biol. (N.Y.) 122, 200 (1966).

    Google Scholar 

  4. Burdette, W. J.: Discussion of W. D. Holden et al. [20]. Ann. Surg. 162, 534 (1965).

    Google Scholar 

  5. Caliva, F. S., R. Napodano, R. Zurek, T. Pombo, and R. H. Lyons: The effect on myocardial oxygen availability of hemorrhagic hypotension and its reversal by various agents, including 1-norepinephrine. Amer. J. med. Sci. 238, 308 (1959).

    Google Scholar 

  6. Cho, Y. W., D. M. Aviado Jr., and S. Bellet: Myocardial metabolic changes during acute hemorrhage. Angiology 16, 532 (1965).

    Google Scholar 

  7. Crowell, J. W., and A. C. Guyton: Evidence favoring a cardiac mechanism in irreversible hemorrhagic shock. Amer. J. Physiol. 201, 893 (1961).

    Google Scholar 

  8. — Further evidence favoring a cardiac mechanism in irreversible hemorrhagic shock. Amer. J. Physiol. 203, 248 (1962).

    Google Scholar 

  9. — Cardiac deterioration in shock. II. The irreversible stage. In: Shock, p. 13, ed. S. G. Hershey. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  10. Edwards, W. S., A. Siegel, and R. J. Bing: Studies on myocardial metabolism III. Coronary blood flow, myocardial oxygen consumption and carbohydrate metabolism in experimental hemorrhagic shock. J. clin. Invest. 33, 1646 (1954).

    Google Scholar 

  11. Entman, M. L., D. B. Hackel, A. M. Martin, E. Mikat, and J. Chang: Prevention of myocardial lesions during hemorrhagic shock in dogs by pronethalol. Arch. Path. 83, 392 (1967).

    Google Scholar 

  12. Glaviano, V. V., and B. Coleman: Effects of norepinephrine on myocardial K, Na, Cl and H2O in hemorrhagic shock. Proc. Soc. exp. Biol. (N.Y.) 116, 136 (1964).

    Google Scholar 

  13. Gomez, O. A., and W. F. Hamilton: Functional cardiac deterioration during development of hemorrhagic circulatory deficiency. Circulat. Res. 14, 327 (1964).

    Google Scholar 

  14. Guyton, A. C., and J. W. Crowell: Cardiac deterioration in shock. I. Its progressive nature. In: Shock, p. 1, ed. S.G. Hershey. Boston: Little Brown & Co. 1964.

    Google Scholar 

  15. Hackel, D. B.: Effects of 1-norepinephrine on cardiac metabolism of dogs in hemorrhagic shock. Proc. Soc. exp. Biol. (N. Y.) 103, 780 (1960).

    Google Scholar 

  16. —, and R. Breitenecker: Time factor in reversibility of myocardial metabolic changes in hemorrhagic shock. Proc. Soc. exp. Biol. (N. Y.) 113, 534 (1963).

    Google Scholar 

  17. —, and W. T. Goodale: Effects of hemorrhagic shock on the heart and circulation of intact dogs. Circulation 11, 628 (1955).

    Google Scholar 

  18. Hochrein, H.: Über den Energie-, Elektrolyt- und Enzymstoffwechsel des hypoxischen Herzens. Med. Welt 1964, 1112.

  19. — Der präinsuffiziente Myokardstoffwechsel. In: Herzinsuffizienz, Hämodynamik und Stoffwechsel, S. 260. Stuttgart: G. Thieme 1964

    Google Scholar 

  20. Holden, W. D., R. G. DePalma, W. R. Drucker, and A. McKalen: Ultrastructural changes in hemorrhagic shock. Electron microscopic study of liver, kidney and striated muscle cells in rats. Ann. Surg. 162, 517 (1965).

    Google Scholar 

  21. Izquieta, J. M., and B. Pasternack: Electrocardiographic changes in hemorrhage and ischemic compression shock. Proc. Soc. exp. Biol. (N. Y.) 61, 407 (1946).

    Google Scholar 

  22. Jedeikin, L. A.: Glycogen and phosphorylase distribution throughout the walls of the rabbit heart. Fed. Proc. 20, 302 (1961).

    Google Scholar 

  23. Karpatkin, S., E. Helmreich, and C. F. Cori: Regulation of glycolysis in muscle. II. Effect of stimulation and epinephrine in isolated frog sartorius muscle. J. biol. Chem. 239, 3139 (1964).

    Google Scholar 

  24. Kendrick-Jones, J., and S. V. Perry: Enzymatic adaptation to contractile activity in skeletal muscle. Nature (Lond.) 208, 1068 (1965).

    Google Scholar 

  25. Kirchheim, H., u. H. Baubkus: Säure-Basen-Veränderungen im standardisierten hämorrhagischen Schock. Pflügers Arch. ges. Physiol. 295, 293 (1967).

    Google Scholar 

  26. Kirk, E. S., and C. R. Honig: Nonuniform distribution of blood flow and gradients of oxygen tension within the heart. Amer. J. Physiol. 207, 661 (1964).

    Google Scholar 

  27. Lefer, A. M., R. Cowgill, F. F. Marshall, L. M. Hall, and E. D. Brand: Characterization of a myocardial depressant factor present in hemorrhagic shock. Amer. J. Physiol. 213, 492 (1967).

    Google Scholar 

  28. Lillehei, R. C., J. K. Longerbeam, J. H. Bloch, and W. G. Manax: The nature of experimental irreversible shock with its clinical application. In: Shock, p. 139, ed. S. G. Hershey, Boston: Little, Brown & Co. 1964.

    Google Scholar 

  29. Lundsgaard-Hansen, P.: Die regionale Verteilung des Sauerstoffmangels im experimentellen hämorrhagischen Schock. Langenbecks Arch. klin. Chir. 311, 64 (1965).

    Google Scholar 

  30. — Oxygen supply and anaerobic metabolism of the heart in experimental hemorrhagic shock. Ann. Surg. 163, 10 (1966).

    Google Scholar 

  31. — C. Meyer, and H. Riedwyl: Transmural gradients of glycolytic enzyme activities in left ventricular myocardium. I. The normal state. Pflügers Arch. ges. Physiol. 297, 89 (1967).

    Google Scholar 

  32. Martin Jr., A. M., and D. B. Hackel: The myocardium of the dog in hemorrhagic shock: A histochemical study. Lab. Invest. 12, 77 (1963).

    Google Scholar 

  33. D. B. Hackel An electron microscope study of the progression of myocardial lesions in the dog after hemorrhagic shock. Lab. Invest. 15, 243 (1966).

    Google Scholar 

  34. D. B. Hackel and S. M. Kurtz: The ultrastructure of zonal lesions of the myocardium in hemorrhagic shock. Amer. J. Path. 44, 127 (1964).

    Google Scholar 

  35. Master, A. M., S. Dack, H. Horn, B. I. Freedman, and L. E. Field: Acute coronary insufficiency due to acute hemorrhage: An analysis of one hundred and three cases. Circulation 1, 302 (1950).

    Google Scholar 

  36. Melcher Jr., G. W., and W. W. Walcott: Myocardial changes following shock. Amer. J. Physiol. 164, 832 (1951).

    Google Scholar 

  37. Mylon, E., C. W. Cashman Jr., and M. C. Winternitz: Studies on mechanisms involved in shock and its therapy. Amer. J. Physiol. 142, 299 (1944).

    Google Scholar 

  38. Nagano, M., u. H. Hochrein: Enzymatische Störungen im Myokard bei Belastung und Insuffizienz des Herzens. Klin. Wschr. 41, 1020 (1963).

    Google Scholar 

  39. Roth, E., H. W. Schüler, O. Suleder, u. B. Sobol: Metabolitkonzentrationen in Herz, Gehirn, Niere und Leber des Hundes bei kontrollierter Hypotension. Z. ges. exp. Med. 144, 258 (1967).

    Google Scholar 

  40. Rothe, C. F., and E. E. Selkurt: Cardiac and peripheral failure in hemorrhagic shock in the dog. Amer. J. Physiol. 207, 203 (1964).

    Google Scholar 

  41. Sarnoff, S. J., R. B. Case, P. E. Waithe, and J. P. Isaacs: Insufficient coronary flow and myocardial failure as a complicating factor in late hemorrhagic shock. Amer. J. Physiol. 176, 439 (1954).

    Google Scholar 

  42. Schmidt, H. D., u. J. Schmier: Kontraktilitätsschädigung des Herzens im frühen hämorrhagischen Schock. Pflügers Arch. ges. Physiol. 285, 241 (1965).

    Google Scholar 

  43. — Nachweis einer Kontraktilitätsschädigung des Herzens im späten hämorrhagischen Schock. Z. Kreisl.-Forsch. 54, 325 (1965).

    Google Scholar 

  44. Schneider, M.: Zur Pathophysiologie des Schocks. In: Schock und Plasmaexpander, S. 1. Berlin-Göttingen-Heidelberg: Springer 1964.

    Google Scholar 

  45. Simeone, F. A., E. A. Husni, and M. G. Weidner Jr.: The effect of l-norepinephrine upon the myocardial oxygen tension and survival in acute hemorrhagic hypotension. Surgery 44, 168 (1958).

    Google Scholar 

  46. Weidner Jr., M. G., M. Albrecht, and G. H. A. Clowes Jr.: Relationship of myocardial function to survival after oligemic hypotension. Surgery 55, 73 (1964).

    Google Scholar 

  47. L. Roth, and F. A. Simeone: Myocardial response to prolonged acute oligemic hypotension. Surgery 50, 75 (1961).

    Google Scholar 

  48. Wiggers, C. J., and J. M. Werle: Cardiac and peripheral resistance factors as determinants of circulatory failure in hemorrhagic shock. Amer. J. Physiol. 136, 421 (1942).

    Google Scholar 

  49. Williamson, J. R.: Metabolic effects of epinephrine in the isolated, perfused rat heart. I. Dissociation of the glycogenolytic from the metabolic stimulatory effect. J. biol. Chem. 239, 2721 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by Research Grant No. 4139 from the Swiss National Foundation for the Advancement of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundsgaard-Hansen, P., Meyer, C., Riedwyl, H. et al. Transmural gradients of glycolytic enzyme activities in left ventricular myocardium. Pflügers Arch 301, 144–161 (1968). https://doi.org/10.1007/BF00362732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362732

Schlüsselwörter

Key-Words

Navigation