Skip to main content
Log in

Evolution of the microstructure of undoped and Nb-doped SrTiO3

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Undoped and Nb-doped SrTiO3 specimens with excess titania compositions were prepared by sintering in air at 1420 or 1480 °C. Large grains due to liquid-phase sintering were obtained for undoped specimens containing ⩾ 0.6 mol % excess titania and fired at 1480 °C. On the other hand uniform fine grains were observed for samples fired at 1420 °C, resulting from grain-growth inhibition due to exsolved TiO2 second phase. The solubility of excess titania seemed less than 0.2 mol% under our experimental conditions. The microstructural behaviour of Nb-doped SrTiO3 could be explained well by the Sr-vacancy compensation model. According to this model, the solubility of excess titania in SrTiO3 increased with Nb2O5 dopant concentration. Thus, for specimens which had high excess titania compositions and were sintered at 1480 °C, large grains were observed when the Nb content was low enough to retain sufficient excess titania-forming liquid phase. For specimens having the same compositions and fired at 1420 °C, uniform fine grains were obtained due to grain growth inhibition by the exsolved TiO2 second phase, when the Nb content was low. If the excess titania was less than the solubility determined by the amount of Nb dopant, Ruddlesden-Popper-type phases were believed to be formed and resulted in poor densification. Although excess titania was the major factor in determining the grain size of the specimens, the niobium dopant enhanced grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Goodman, in “Advances in Ceramics”, Vol. 1, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Westerville, Ohio, 1981) p. 215.

    Google Scholar 

  2. N. Yamaoka and T. Matsui, ibid. p. 232.

    Google Scholar 

  3. H. D. Park and D. A. Payne ibid. p. 242.

    Google Scholar 

  4. V. W. R. Amarakoon, PhD thesis, University of Illinois-Urbana Champaign (1980).

  5. M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson and D. S. Ginley, J. Amer. Chem. Soc. 98 (1976) 2774.

    Article  CAS  Google Scholar 

  6. T. Seiyama, H. Arai, H. Niita and K. Yasugata, Japanese Patent 60225051 (1985).

  7. N. H. Chan, R. K. Sharma and D. M. Smyth, J. Electrochem. Soc. 128 (1981) 1762.

    Article  CAS  Google Scholar 

  8. S. Witek, D. M. Smyth and H. Pickup, J. Amer. Ceram. Soc. 67 (1984) 372.

    Article  CAS  Google Scholar 

  9. N. G. Eror and U. Balachandran, J. Solid State Chem. 42 (1982) 227.

    Article  CAS  Google Scholar 

  10. Idem, ibid. 40 (1981) 85.

    Article  CAS  Google Scholar 

  11. G. H. Jonker, Solid State Electronics 7 (1964) 895.

    Article  CAS  Google Scholar 

  12. W. Heywang, J. Mater. Sci. 6 (1971) 1214.

    Article  CAS  Google Scholar 

  13. R. Wernicke, Phys. Status Solidi (a) 47 (1978) 139.

    Article  CAS  Google Scholar 

  14. M. Kahn, J. Amer. Ceram. Soc. 54 (1971) 452.

    Article  CAS  Google Scholar 

  15. T. Murakami, T. Miyashita, M. Nakahara and E. Sekine, ibid. 56 (1973) 294.

    Article  CAS  Google Scholar 

  16. M. Drofenik, A. Popovic and D. Kolar, Amer. Ceram. Soc. Bull. 63 (1984) 702.

    CAS  Google Scholar 

  17. K. Lubitz, in “Sintering — Theory and Practice”, Proceedings of 5th International Round Table Conference on Sintering, Portorž, Yugoslavia, 7–10 September 1981, p. 343.

  18. I. Burn and S. Neirman, J. Mater. Sci. 17 (1982) 3510.

    Article  CAS  Google Scholar 

  19. M. Raymond, MS thesis, Alfred University (1987).

  20. N. Stenton and M. P. Harmer, in “Advances in Ceramics”, Vol. 7, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Westerville, Ohio, 1983) p. 156.

    Google Scholar 

  21. R. Wernicke, in “Advances in Ceramics”, Vol. 1, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Westerville, Ohio, 1981) p. 261.

    Google Scholar 

  22. M. P. Pechini, US Patent 3 330 697 (1967).

  23. S. G. Cho, P. F. Johnson and R. A. Condrate Sr, J. Mater. Sci. 25 (1990) 4738.

    Article  CAS  Google Scholar 

  24. E. Underwood, “Quantitative Stereology” (Addison-Wesley, New York, 1970) p. 23.

    Google Scholar 

  25. M. I. Mendelson, J. Amer. Ceram. Soc. 52 (1969) 443.

    Article  CAS  Google Scholar 

  26. ASTM C373-72, “Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products” (ASTM, Philadelphia, 1972).

  27. E. M. Levin, C. R. Robbins and H. F. McMurdie, “Phase Diagrams for Ceramists” (American Ceramic Society, Westerville, Ohio, 1964) Figs 297, 298 and 1969 Supplement Fig. 2334.

    Google Scholar 

  28. U. Balachandran and N. G. Eror, J. Electrochem. Soc. 129 (1982) 1021.

    Article  CAS  Google Scholar 

  29. S. N. Ruddlesden and P. Popper, Acta. Crystallogr. 11 (1958) 54.

    Article  CAS  Google Scholar 

  30. K. R. Udayakumar and A. N. Cormack, J. Phys. Chem. Solids. 50 (1989) 55.

    Article  CAS  Google Scholar 

  31. A. E. Paladino, J. Amer. Ceram. Soc. 48 (1965) 476.

    Article  CAS  Google Scholar 

  32. S. G. Cho and P. F. Johnson, Ferroelectrics 132 (1992) 115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, S.G., Johnson, P.F. Evolution of the microstructure of undoped and Nb-doped SrTiO3 . Journal of Materials Science 29, 4866–4874 (1994). https://doi.org/10.1007/BF00356536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356536

Keywords

Navigation