Skip to main content
Log in

Human glucokinase regulatory protein (GCKR): cDNA and genomic cloning, complete primary structure, and chromosomal localization

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Null mutations in the glucokinase (GCK) gene can cause autosomal dominant type 2 diabetes (maturity onset diabetes of the young, MODY); however, MODY is genetically heterogeneous. In both liver and pancreatic islet, glucokinase is subject to inhibition by a regulatory protein (GCKR). Given the role of GCK in MODY, GCKR is itself a candidate type 2 diabetes susceptibility gene. Here we describe the structure of full-length (2.2 kb) cDNA for human GCKR, from the hepatoblastoma cell line HepG2. The human GCKR translation product has 625 amino acids and a predicted molecular weight of 68,700. It has 88% amino acid identity to rat GCKR. Yeast artificial chromosomes (YAC clones) containing human GCKR were isolated, and the gene was mapped to Chromosome (Chr) 2p23 by fluorescent in situ hybridization and somatic cell hybrid analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, R., Riley, J.H., Butler, R., Smith, J.C., Markham, A.F. (1990). A 3.5 genome equivalent multi-access YAC library: construction, characterisation, screening and storage. Nucleic Acids Res. 18, 1951–1956.

    Google Scholar 

  • Bell, G.I., Xiang, K.S., Newman, M.V., Wu, S.H., Wright, L.G., Fajans, S.S., Spielman, R.S., Cox, N.J. (1991). Gene for non-insulin-dependent diabetes mellitus (maturity onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc. Natl. Acad. Sci. USA 88, 1484–1488.

    Google Scholar 

  • Bonthron, D.T., Brady, N., Donaldson, I.A., Steinmann, B. (1994). Molecular basis of essential fructosuria; molecular cloning and mutational analysis of human ketohexokinase. Hum. Mol. Genet. 3, 1627–1631.

    Google Scholar 

  • Detheux, M., Vandekerckhove, J., Van Schaftingen, E. (1993). Clonging and sequencing of rat liver cDNAs encoding the regulatory protein of glucokinase. FEBS Lett. 321, 111–115 (correction in FEBS Lett. 339, 312–315).

    Google Scholar 

  • Devereux, J., Haeberli, P., Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.

    Google Scholar 

  • Froguel, P., Zouali, H., Vionnet, N., Velho, G., Vaxillaire, M., Sun, F., Lesage, S., Stoffel, M., Takeda, J., Passa, P., Permutt, M.A., Beckmann, J.S., Bell, G.I., Cohen, D. (1993). Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N. Engl. J. Med. 328, 697–702.

    Google Scholar 

  • Kozak, M. (1987). An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148.

    Google Scholar 

  • Landegent, J.E., Jansen in de Wal, N., Dirks, R.W., Baao, F., van der Ploeg, M. (1987). Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77, 366–370.

    Google Scholar 

  • Malaisse, W.J., Malaisse-Lagae, F., Davies, D.R., Vandercammen, A., Van Schaftingen, E. (1990). Regulation of glucokinase by a fructose-1-phosphate-sensitive protein in pancreatic islets. Eur. J. Biochem. 190, 539–545.

    Google Scholar 

  • Matschinsky, F.M. (1990). Glucokinase as glucose sensor and metabolic signal generator in pancreatic β-cells and hepatocytes. Diabetes 39, 647–652.

    Google Scholar 

  • Pinkel, D., Strawme, T., Gray, J.W. (1986). Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83, 2934–2939.

    Google Scholar 

  • Sinclair, K., Warner, J.P., Bonthron, D.T. (1994). The ASP1 gene of Saccharomyces cerevisiae, encoding the intracellular isozyme of L-asparaginase. Gene 144, 37–43.

    Google Scholar 

  • Van Schaftingen, E. (1989). A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate. Eur. J. Biochem. 179, 179–184.

    Google Scholar 

  • Vaxillaire, M., Vionnet, N., Vigouroux, C., Sun, F., Espinosa, R., Lebeau, M.M., Stoffel, M., Lehto, M., Beckmann, J.S., Detheux, M., Passa, P., Cohen, D., Van Schaftingen, E., Velho, G., Bell, G.I., Froguel, P. (1994). Search for a third susceptibility gene for maturity-onset diabetes of the young: studies with eleven candidate genes. Diabetes 43, 389–395.

    Google Scholar 

  • Vaxillaire, M., Boccio, V., Philippi, A., Vigouroux, C., Terwilliger, J., Passa, P., Beckmann, J.S., Velho, G., Lathrop, G.M., Froguel, P. (1995). A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nature Genet. 9, 418–423.

    Google Scholar 

  • Veiga-da-Cunha, M., Detheux, M., Watelet, N., Van Schaftingen, E. (1994). Cloning and expression of a Xenopus liver cDNA encoding a fructose-phosphate-insensitive regulatory protein of glucokinase. Eur. J. Biochem. 225, 43–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

EMBL database accession numbers: Z48475 and Z48476.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, J.P., Leek, J.P., Intody, S. et al. Human glucokinase regulatory protein (GCKR): cDNA and genomic cloning, complete primary structure, and chromosomal localization. Mammalian Genome 6, 532–536 (1995). https://doi.org/10.1007/BF00356171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356171

Keywords

Navigation