Skip to main content
Log in

Transport properties of liquid phase in capillary-like media and its application to sintering of metallic and ceramic powders

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Intergranular mass transport in materials plays an important role in successful bonding of particles, and controls the material's properties. This results from the processing conditions including the intergranular mass transport and interfacial reactions. The model of liquid mass transport of metals, molten salts, silicates, and molecular liquids, in capillary-like media is discussed. The model concentrates on the role of surface tension-to-viscosity ratio, γ/η, and volume diffusion on the liquid flow in fine pores with diameters comparable to the liquid phase above its critical thickness. We have found the following relation between two parameters: D cap=(y/η)Lα, where α and L are a specific permeability and the mean diffusive jump length of atoms/ions/molecules, respectively. The specific permeability is related to the hydraulic permeability, taken from Darcy's law, and depends on capillary radius and liquid/solid contact angle. It is demonstrated that the specific permeability depends on the interfacial reactions and heterogeneity of the system. The mass transport in liquid layers seems to be initiated by atoms with low interatomic distances (low atomic radii) in liquid metals or by the high non-bridging oxygen content in aluminosilicate melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Frenkel, J. Phys. 9 (1945) 385.

    Google Scholar 

  2. J. W. Nowok, Scripta Metall. Mater. 29 (1993) 931.

    Article  CAS  Google Scholar 

  3. Idem, Acta Metall. Mater. 42 (1994) 4025.

    Article  CAS  Google Scholar 

  4. Idem, J. Mater. Res. 10 (1995) 401.

    Article  CAS  Google Scholar 

  5. P. C. Hess, J. Geoph. Res. 99 (1994) 7219.

    Article  Google Scholar 

  6. J. N. Israelachvili, P. McGuiggan, M. Gee, A. Homola, M. Robbins and P. Thomson, J. Phys. Condens. Matter 2 (1990) SA89.

    Article  CAS  Google Scholar 

  7. J. N. Israelachvili, Surf. Sci. Rep. 14 (1992) 109.

    Article  CAS  Google Scholar 

  8. T. K. Chaki, Philos. Mag. 62 (1990) 465.

    Article  Google Scholar 

  9. R. A. Fournelle, Mater. Sci. Eng. A138 (1991) 133.

    Article  CAS  Google Scholar 

  10. M. D. Vaudin, J. E. Blendell and C. A. Handwerker, in “Structure and Property Relationships for Interfaces”, edited by J. L. Walter, A. H. King and K. Tangri (ASM, 1991) p. 329.

  11. R. Defay and G. Pétré, in “Surface and Colloid Science”, edited by E. Matijeviċ (Wiley, New York, 1971) p. 28.

    Google Scholar 

  12. D. J. Stevenson, Geophys. Res. Lett. 13 (1986) 1149.

    Article  Google Scholar 

  13. F. F. Lange, J. Am. Ceram. Soc. 65 (1982) C-33.

    Article  Google Scholar 

  14. V. Smolej, ibid. 66 (1983) C-33.

    Article  Google Scholar 

  15. R. M. German, ibid. 69 (1986) C-40.

    Article  Google Scholar 

  16. P. L. Vitagliano, L. Ambrosone and V. Vitagliano, J. Phys. Chem. 96 (1992) 1431.

    Article  CAS  Google Scholar 

  17. Y. Zhang, D. Walker and C. E. Lesher, Contr. Mineral. Petrol. 102 (1989) 492.

    Article  CAS  Google Scholar 

  18. R. E. Loehman and A. P. Tomsia, Ceram. Bull. 67 (1988) 375.

    CAS  Google Scholar 

  19. H. Wakabayashi and Y. Oishi, J. Chem. Phys. 68 (1978) 2046.

    Article  CAS  Google Scholar 

  20. S. Chakraborty, D. B. Dingwell and D. C. Rubie, Geochim. Cosmochim. Acta 59 (1995) 255.

    Article  CAS  Google Scholar 

  21. Po-Zen Wong, MRS Bull. 19 (1994) 32.

    Article  Google Scholar 

  22. A. W. Adamson, “Physical Chemistry of Surfaces” (Wiley, New York, 1967).

    Google Scholar 

  23. J. H. Simmons, R. K. Mohr and C. J. Montrose, J. Appl. Phys. 53 (1982) 4075.

    Article  CAS  Google Scholar 

  24. G. Camera-Roda and G. C. Sarti, AIChE J. 36 (1990) 851.

    Article  CAS  Google Scholar 

  25. D. Turnbull and M. H. Cohen, J. Chem. Phys. 34 (1961) 120.

    Article  CAS  Google Scholar 

  26. Idem, ibid. 52 (1970) 3038.

    Article  Google Scholar 

  27. D. Turnbull, in “Liquid: Structure, Properties, Solid Interactions”, edited by T. J. Hughel (Elsevier, Amsterdam, 1965) p. 6.

    Google Scholar 

  28. A. Van den Beukel and J. Sietsma, Mater. Sci. Eng. A179/A180 (1994) 86.

    Article  Google Scholar 

  29. H. Eyring and M. S. Jhon, “Significant Liquid Structures” (Wiley, New York, 1969) p. 91.

    Google Scholar 

  30. F. M. Miller, “Chemistry and Dynamics” (McGraw-Hill, 1984) p. 176.

  31. H. Bloom and J. M. Bockris, in “Structural Aspects of Ionic Liquids”, edited by B. R. Sundheim (McGraw-Hill, New York, 1964) p. 1.

    Google Scholar 

  32. G. J. Janz and R. P. T. Tomkins, “Molten Salts”, Vol. 5, Part 2, J. Phys. Chem. Ref. Data 12 (3) (1983).

  33. B. R. Sundheim, (ed.) “Fused Salts” (McGraw-Hill, New York, 1964) p. 165.

    Google Scholar 

  34. N. E. Cusack, “The Physics of Structurally Disordered Matter” (Adam Hilger, Bristol, 1987).

    Google Scholar 

  35. N. P. Bansal and R. H. Doremus, “Handbook of Glass Properties” (Academic Press, Orlando, FL, 1986) p. 101.

    Book  Google Scholar 

  36. M. P. Ryan and J. Y. K. Blevis, “Viscosity of Synthetic and Natural Silicate Melts and Glasses at High Temperatures and 1 bar Pressure”, US Geological Servey Bulletin (1987) p. 1764.

  37. N. F. Mott, Philos. Mag. B56 (1987) 257.

    Article  Google Scholar 

  38. L. Ferrari, N. F. Mott and G. Russo, ibid. 59 (1989) 263.

    Article  Google Scholar 

  39. S. B. Liu, J. E. Stebbins, E. Schneider and A. Pines, Geochim. Cosmoch. Acta 52 (1988) 527.

    Article  CAS  Google Scholar 

  40. T. Dunn, ibid. 46 (1982) 2293.

    Article  CAS  Google Scholar 

  41. T. Dunn, in “Silicate Melts”, edited by C. M. Scarfe, Short Course Handbook, Vol. 12 (Mineralogical Association of Canada, Ottawa, Ontario, 1986) p. 57.

    Google Scholar 

  42. H. A. Schaffer, J. Non-Cryst. Solids 67 (1984) 19.

    Article  Google Scholar 

  43. S. Chakraborty, Reviews in Mineralogy 32 (1995) 411.

    CAS  Google Scholar 

  44. R. C. Weast (ed.) “CRC Handbook of Chemistry and Physics” (CRC Press Inc., Boca Raton, FL, 1987) p. F35.

    Google Scholar 

  45. T. Uchino, T. Sakka, Y. Ogata and M. Wasaki, J. Phys. Chem. 97 (1993) 9642.

    Article  CAS  Google Scholar 

  46. J. W. Nowok, J. P. Hurley and J. A. Bieber, J. Mater. Sci. 30 (1995) 361.

    Article  CAS  Google Scholar 

  47. Y. Waseda, in “Liquid Metals”, edited by E. Evans and D. A. Greenwood (The Institute of Physics, Bristol, 1977) p. 230.

    Google Scholar 

  48. R. L. McGreevy, Solid State Phys. 40 (1987) 247.

    Article  CAS  Google Scholar 

  49. C. Honeisel, “Theoretical Treatment of Liquids and Liquid Mixtures” (Elsevier, Amsterdam, 1993) p. 226.

    Google Scholar 

  50. A. Passerone and N. Eustathopolous, Acta Metall. 30 (1982) 1349.

    Article  Google Scholar 

  51. A. P. Tomsia and J. A. Pask, in “Ceramics and Glasses” Vol. 4, edited by S. J. Schneider (ASM International, 1991) pp. 493 and 482.

  52. R. Sinclair, D. H. Ko, T. J. Konno and T. P. Nolan, Mater. Res. Soc. Symp. Proc. 238 (1992) 269.

    Article  CAS  Google Scholar 

  53. C. A. Handwerker, J. W. Cahn and J. R. Manning, Mater. Sci. Eng. A126 (1990) 173.

    Article  CAS  Google Scholar 

  54. A. L. Greer, ibid. A134 (1991) 1268.

    Article  CAS  Google Scholar 

  55. D. N. Yoon and W. J. Huppmann, Acta Metall. 27 (1979) 973.

    Article  CAS  Google Scholar 

  56. F. Spaepen, Solid State Phys. 47 (1994) 1.

    Article  CAS  Google Scholar 

  57. A. Navrotsky, Rev. Mineral. 17 (1987) 35.

    Google Scholar 

  58. G. Adams and J. H. Gibbs, J. Phys. Chem. 43 (1965) 139.

    Article  Google Scholar 

  59. J. W. Cahn, Acta Metall. 28 (1980) 1333.

    Article  CAS  Google Scholar 

  60. J. W. Cahn and J. E. Taylor, Acta Metall. Mater. 42 (1994) 1045.

    Article  CAS  Google Scholar 

  61. P. Richet and O. R. Neuville, in “Thermodynamic Data, Systematics and Estimation”, edited by S. K. Saxena (Springer, New York, 1992) p. 132.

    Chapter  Google Scholar 

  62. S. Chakraborty, D. B. Dingwell and D. C. Rubie, Geochim. Cosmochim. Acta 59 (1995) 265.

    Article  CAS  Google Scholar 

  63. J. F. Stebbins, I. Farnan and X. Xue, Chem. Geol. 96 (1992) 371.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowok, J.W. Transport properties of liquid phase in capillary-like media and its application to sintering of metallic and ceramic powders. JOURNAL OF MATERIALS SCIENCE 31, 5169–5177 (1996). https://doi.org/10.1007/BF00355921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355921

Keywords

Navigation