Skip to main content
Log in

The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The trnK gene endocing the tRNALys (UUU) has been located on mustard (Sinapis alba) chloroplast DNA, 263 by upstream of the psbA gene on the same strand. The nucleotide sequence of the trnK gene and its flanking regions as well as the putative transcription start and termination sites are shown. The 5′ end of the transcript lies 121 by upstream of the 5′ tRNA coding region and is preceded by procaryotic-type “−10” and “−35” sequence elements, while the 3′ end maps 2.77 kb downstream to a DNA region with possible stem-loop secondary structure. The anticodon loop of the tRNALys is interrupted by a 2,574 by intron containing a long open reading frame, which codes for 524 amino acids. Based on conserved stem and loop structures, this intron has characteristic features of a class II intron. A region near the carboxyl terminus of the derived polypeptide appears structurally related to maturases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

psbA:

gene coding for the Mr 32,000 herbicide binding photosystem II protein

COI:

cytochrome c oxidase subunit I

trnK:

gene coding for chloroplast tRNALys

References

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Biggin MD, Gibson TJ, Hong GF (1983) Proc Natl Acad Sci USA 80:3963–3965

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A (1980) J Biol Chem 255:11927–11941

    Google Scholar 

  • Bonnard G, Michel F, Weil JH, Steinmetz A (1984) Mol Gen Genet 194:330–336

    Google Scholar 

  • Boyer SK, Mullett JE (1986) Plant Mol Biol 6:229–244

    Google Scholar 

  • Bradley D, Gatenby AA (1985) EMBO J 4:3641–3648

    Google Scholar 

  • Burke JM, RajBhandary UL (1982) Cell 31:509–520

    Google Scholar 

  • Cech T (1983) Cell 34:713–716

    Google Scholar 

  • Cech T (1986) Cell 44:207–210

    Google Scholar 

  • Dietrich G, Link G (1985) Curr Genet 9:683–692

    Google Scholar 

  • Gruissem W, Zurawski G (1985) EMBO J 4:3375–3383

    Google Scholar 

  • Hanley-Bowdoin L, Orozco EM, Chua N-H (1985) Mol Cell Biol 5:2733–2745

    Google Scholar 

  • Hawley D, McClure WR (1983) Nucleic Acids Res 11:2237–2255

    Google Scholar 

  • Keller M, Michel F (1985) FEBS Lett 179:69–73

    Google Scholar 

  • Koch E, Edwards K, Kössel H (1981) Cell 25:203–213

    Google Scholar 

  • Kung SD, Lin CM (1985) Nucleic Acids Res 13:7543–7549

    Google Scholar 

  • Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132

    Google Scholar 

  • Lang BF, Ahne F, Bonen L (1985) J Mol Biol 184:353–366

    Google Scholar 

  • Lazowska J, Jacq C, Slonimski PC (1980) Cell 22:333–348

    Google Scholar 

  • Link G (1981) Nucleic Acids Res 15:3681–3694

    Google Scholar 

  • Link G (1982) Planta 154:81–86

    Google Scholar 

  • Link G (1984) EMBO J 3:1697–1704

    Google Scholar 

  • Link G, Langridge U (1984) Nucleic Acids Res 12:945–957

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Margulies L (ed) (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Maxam AM, Gilbert W (1977) Proc Natl Acad Sci USA 74:560–564

    Google Scholar 

  • Michel F, Dujon B (1983) EMBO J 2:33–38

    Google Scholar 

  • Michel F, Lang BF (1985) Nature (London) 316:641–643

    Google Scholar 

  • Osiewacz HD, Esser K (1984) Curr Genet 8:299–305

    Google Scholar 

  • Przybyl D, Fritzsche E, Edwards K, Kössel H, Falk H, Thompson JA, Link G (1984) Plant Mol Biol 3:147–158

    Google Scholar 

  • Queen C, Korn LJ (1984) Nucleic Acids Res 12:581–599

    Google Scholar 

  • Rochaix JD, Rahire M, Michel F (1985) Nucleic Acids Res 13:975–984

    Google Scholar 

  • Rosenberg M, Court D (1979) Annu Rev Genet 13:319–353

    Google Scholar 

  • Sanger F, Nicklen S, Coulson ARC (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sharp P (1985) Cell 42:397–400

    Google Scholar 

  • Shinozaki K, Deno H, Sugita M, Kuramitsu S, Sugiura M (1986) Mol Gen Genet 202:1–5

    Google Scholar 

  • Steinmetz A, Gubbins EJ, Bogorad L (1982) Nucleic Acids Res 10:3027–3037

    Google Scholar 

  • Strittmatter G, Gozdzicka-Josefiak A, Kössel H (1985) EMBO J 4:599–604

    Google Scholar 

  • Sugita M, Shinozaki K, Sugiura M (1985) Proc Natl Acad Sci USA 82:3557–3561

    Google Scholar 

  • Sutcliffe JG (1978) Nucleic Acids Res 5:2721–2728

    Google Scholar 

  • Takaiwa F, Sugiura M (1982) Nucleic Acids Res 10:2665–2676

    Google Scholar 

  • Van der Veen R, Arnberg AC, Van der Horst G, Bonen L, Tabak HF, Grivell LA (1986) Cell 44:225–234

    Google Scholar 

  • Weis-Brummer B, Holl J, Schweyen RJ, Rodel G, Kaudewitz F (1983) Cell 33:195–202

    Google Scholar 

  • Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34:279–310

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhaus, H., Link, G. The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11, 251–257 (1987). https://doi.org/10.1007/BF00355398

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355398

Key words

Navigation