Skip to main content
Log in

Analysis of centromere function in Saccharomyces cerevisiae using synthetic centromere mutants

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We constructed Saccharomyces cerevisiae centromere DNA mutants by annealing and ligating synthetic oligonucleotides, a novel approach to centromere DNA mutagenesis that allowed us to change only one structural parameter at a time. Using this method, we confirmed that CDE I, II, and III alone are sufficient for centromere function and that A+T-rich sequences in CDE II play important roles in mitosis and meiosis. Analysis of mutants also showed that a bend in the centromere DNA could be important for proper mitotic and meiotic chromosome segregation. In addition we demonstrated that the wild-type orientation of the CDE III sequence, but not the CDE I sequence, is critical for wild-type mitotic segregation. Surprisingly, we found that one mutant centromere affected the segregation of plasmids and chromosomes differently. The implications of these results for centromere function and chromosome structure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker RE, Masison DC (1990) Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol Cell Biol 10:2458–2467

    Google Scholar 

  • Baker RE, Fitzgerald-Hayes M, O'Brien TC (1989) Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J Biol Chem 264:10843–10850

    Google Scholar 

  • Bauer BF, Holmes WM (1989) Cloning of synthetic oligonucleotides may result in high frequency promoter mutations in Escherichia coli. Nucleic Acids Res 17:812

    Google Scholar 

  • Bloom K, Hill A, Kenna M, Saunders M (1989) The structure of a primitive kinetochore. Trends Biol Sci 14:223–227

    Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Google Scholar 

  • Bram RJ, Kornberg RD (1987) Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell Biol 7:403–409

    Google Scholar 

  • Cai M, Davis RW (1990) Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosme stability and methionine prototrophy. Cell 61:437–446

    Google Scholar 

  • Clarke L, Carbon J (1983) Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23–28

    Google Scholar 

  • Cottarel G, Shero JH, Hieter P, Hegemann JH (1989) A 125-basepair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349

    Google Scholar 

  • Cumberledge S, Carbon J (1987) Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212

    Google Scholar 

  • Densmore L, Payne WE, Fitzgerald-Hayes M (1991) In vivo genomic footprint of a yeast centromere. Mol Cell Biol 11:154–165

    Google Scholar 

  • Gaudet A, Fitzgerald-Hayes M (1987) Alterations in the ademineplus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol Cell Biol 7:68–75

    Google Scholar 

  • Gaudet A, Fitzgerald-Hayes M (1989a) Mutations in CEN3 cause aberrant chromosome segregation during meiosis in Saccharomyces cerevisiae. Genetics 121:447–489

    Google Scholar 

  • Gaudet A, Fitzgerald-Hayes M (1989b) The function of centromeres in chromosome segregation. In: Strauss P, Wilson S (eds) The eukaryotic nucleus: molecular biochemistry and macromolecular assemblies. Telford Press, Caldwell, New Jersey, pp 845–881

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Google Scholar 

  • Hegemann JH, Pridmore RD, Schneider R, Philippsen P (1986) Mutations in the right boundary of Saccharomyces cerevisiae centromere VI lead to nonfunctional or partially functional centromeres. Mol Gen Genet 205:305–311

    Google Scholar 

  • Hegemann JH, Shero JH, Cottarel G, Philipssen P, Hieter P (1988) Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 8:2523–2535

    Google Scholar 

  • Hieter P, Mann C, Snyder M, Davis RW (1985) Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381–392

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Lechner J, Carbon J (1991) A 240kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725

    Google Scholar 

  • Mandecki W, Bolling TJ (1988) FokI method of gene synthesis. Gene 68:101–107

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1983) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • McClain WH, Foss K, Mittelstadt KL, Schneider J (1986) Variants in clones in gene-machine synthesized oligodeoxynucleotides. Nucleic Acids Res 14:6770

    Google Scholar 

  • McGrew JT, Diehl B, Fitzgerald-Hayes M (1986) Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 6:530–538

    Google Scholar 

  • McGrew JT, Xiao Z, Fitzgerald-Hayes M (1989) Saccharomyces cerevisiae mutants defective in chromosome segregation. Yeast 5:271–284

    Google Scholar 

  • Mellor J, Jiang W, Funk M, Rathjen J, Barnes CA, Hinz T, Hegemann JH, Philippsen P (1990) CPF1, a yeast protein which functions in centromeres and promoters. EMBO J 9:4017–4026

    Google Scholar 

  • Murphy M, Fitzgerald-Hayes M (1990) Cis- and trans-acting factors involved in centromere function in Saccharomyces cerevisiae. Mol Microbiol 4:329–336

    Google Scholar 

  • Ng R, Carbon J (1987) Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol Cell Biol 7:4522–4534

    Google Scholar 

  • Ng R, Ness J, Carbon J (1986) Structural studies on centromeres in the yeast Saccharomyces cerevisiae. In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes. Plenum Press, New York, pp 479–492

    Google Scholar 

  • Panzeri L, Landonio L, Stotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4:1867–1874

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Saunders MJ, Fitzgerald-Hayes M, Bloom K (1988) Chromatin structure of altered yeast centromeres. Proc Natl Acad Sci USA 85:175–179

    Google Scholar 

  • Sherman F, Fink G, Hicks JB (1983) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Snouwaert J, Bunick D, Hutchison C, Fowlkes DM (1987) Large numbers of random point and cluster mutations within the adenovirus VA I gene allow characterization of sequences required for efficient transcription. Nucleic Acids Res 15:8293–8303

    Google Scholar 

  • Sokal RR, Rohlf FJ (1987) Biometry. W.H. Freeman, San Francisco, California

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Highfrequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Travers AA (1989) DNA conformation and protein binding. Annu Rev Biochem 58:427–452

    Google Scholar 

  • Wosnick MA, Barnett RW, Vicentini AM, Erfle H, Elliot R, Summer-Smith M, Mantei N, Davies RW (1987) Rapid construction of large synthetic genes: total chemical synthesis of two different versions of the bovine prochymosin gene. Gene 60:115–127

    Google Scholar 

  • Wu H-M, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

by M. Yanagida

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, M.R., Fowlkes, D.M. & Fitzgerald-Hayes, M. Analysis of centromere function in Saccharomyces cerevisiae using synthetic centromere mutants. Chromosoma 101, 189–197 (1991). https://doi.org/10.1007/BF00355368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355368

Keywords

Navigation