Skip to main content
Log in

Intake and coversion of food in the fish Limanda limanda exposed to different temperatures

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In the flat fish Limanda limanda L., feeding rate and conversion efficiency were studied as functions of body weight, sex, temperature and food quality. When offered herring meat at 13 °C (series I), females (live weights 1 to 150 g) consume more food than males; the magnitude of this difference is body weight-dependent. With increasing wieght, both females and males consume less food per unit body weight per day. Variations in daily ration are considerable; the range of deviation from mean feeding rate is about 60% for males and 40% for females. The range of deviation does not vary significantly among females and males of different body weights. At the same temperature level (13 °C; series II), females consume almost the same, or even less, cod meat than males. Among individuals of series I and II, there is a little difference in the feeding rate; however, herring-fed individuals obtain about 2 times more energy than cod-fed individuals. Each gram wet weight of herring meat yields 2001, each gram cod meat 1137, calories. Small individuals completely cease to feed at 3°C; they feed little at 8 °C. Larger females consume maximum amounts at 8 °C. Small individuals consume maximum amounts at higher temperatures. Thus, with increasing body weight (age), the temperature for maximum feeding shifts downwards. Feeding with cod or herring meat results in considerable changes in composition and calorific content of L. Limanda. The magnitude of these changes depends both on temperature and food quality. Food conversion efficiency values of herring-fed individuals are about 1 1/2 times higher than of cod-fed individuals. In series I and II, females are more efficient converters than males. In individuals weighing more than 50 g, conversion efficiency decreases in the order: 8°, 13°, 18° C; in smaller individuals this order is 13°, 18°, 8 °C. Conversion rate is about 2 to 5 times faster in individuals fed herring meat than those receiving cod meat. Conversion rate decreases in the order 13°, 8°, 18 °C in males, and in the order 18°, 13°, 8 °C in females; females of more than 80 g are exceptional in that they reach the maximum at 8 °C. From the data on food intake and food conversion, the biologically useful energy available for metabolism has been calculated for each test individual kept at 13° and 18 °C. At these temperature levels, the weight exponents are about 0.6; the ‘a’ value or metabolic level for the 18 °C series is about 2 times higher than that at 13 °C. Thus, temperature affects metabolic rate but not the exponential value. The exponential value for the body weight-metabolism relation at 13 °C is for dab fed herring meat 0.9; the ‘a’ value amounts to about half that for dab fed cod meat. Food quality, unlike temperature, alters not only the exponential value but also metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aurich, H.: Die Verbreitung der pelagischen Fischbrut in der südlichen Nordsee während der Frühjahrsfahrten 1926–1937. Helgoländer wiss. Meeresunters. 2, 183–225 (1940).

    Google Scholar 

  • Beamish, F. W. H. and L. M. Dickie: Metabolism and biological production in fish. Int. biol. Symposium, Reading, 215–242 (1966).

  • Bohl, H.: Die Biologie der Kliesche (Limanda limanda L.) in der Nordsee. Ber. dt. wiss. Kommn. Meeresforsch. 15, 1–57 (1957).

    Google Scholar 

  • Brett, J. R.: Some principles in the thermal requirements of fishes. Q. Rev. Biol. 31, 75–87 (1956).

    Google Scholar 

  • Brown, M. E.: Experimental studies on growth. In: The physiology of fishes, Vol. 1, pp 361–400. Ed. by M. E. Brown. New York: Academic Press 1957.

    Google Scholar 

  • Bullock, T. H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30, 311–342 (1955).

    Google Scholar 

  • Bückmann, A.: Vorläufige Mitteilung über Fütterungs- und Wachstumsversuche mit Schollen im Aquarium. Kurze Mitt. fischbiol. Abt. Max-Planck-Inst. Meeresbiol. Wilhelmsh. 1, 8–21 (1952).

    Google Scholar 

  • Dannevig, A: The influence of environment on number of vertebrae in plaice. FiskDir. Skr. (Havundersøk.) 9, 9 (1950).

    Google Scholar 

  • — and S. Hansen: Faktorer av betydning for fiskeeggenes og Fiskeyngelons oppvekst. FiskDir. Skr. (Havundersøk.) 10, 5–36 (1952).

    Google Scholar 

  • Dawes, B.: The absorption of fats and lipoids in the plaice (P. platessa L.). J. mar. biol. Ass. U K. 17, 75–102 (1930).

    Google Scholar 

  • —: Growth and maintenance in the plaice (P. platessa L.). Pts 1 & 2. J. mar. biol. Ass. U.K. 17, 103–174; 877–947 (1930–31).

    Google Scholar 

  • Ehrenbaum, E.: Eier und Larven von Pleuronectiden der Nordsee und benachbarter Gewässer. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 12 (C 3), 1–32 (1910).

    Google Scholar 

  • Flüchter, J. and T. J. Pandian: Rate and efficiency of yolk utilization in developing eggs of the sole Solea solea. Helgoländer wiss, Meeresunters. 18, 53–60 (1968).

    Google Scholar 

  • Fry, F. E. J.: Effects of environment on animal activity. Univ. Toronto Stud. biol. Ser. (=Publs Ont. Fish. Res. Lab. 68) 55, 1–63 (1947).

    Google Scholar 

  • —: The aquatic respiration in fish. In: The physiology of fishes, Vol. 1, pp 1–63. Ed. by M. E. Brown. New York: Academic Press 1957.

    Google Scholar 

  • Gerking, S. D.: The protein metabolism of the sunfishes of different ages. Physiol. Zoöl. 25, 358–372 (1952).

    Google Scholar 

  • —: The food turnover of a bluegill population. Ecology 35, 490–498 (1954).

    Google Scholar 

  • —: Influence of rate of feeding on body composition and protein metabolism of bluegill sunfish. Physiol. Zoöl. 28, 267–282 (1955).

    Google Scholar 

  • Gibson, M. B.: Upper lethal temperature relation of the guppy Lebistes reticulatus. Can. J. Zool. 32, 393–407 (1954).

    Google Scholar 

  • Gibson, M. B. and B. Hirst: The effect of salinity and temperature on the pre-adult growth of guppies. Copeia 241–243 (1955).

  • Hatanaka, M, M. Kosaka and Y. Sato: Growth and food consumption in plaice. 1. Limanda yokahamae (Günther). Tohoku J. agric. Res. 7, 151–162 (1956a).

    Google Scholar 

  • —: Growth and food consumption in plaice. 2. Kareius bicoloratus (Basilesky). Tohoku J. agric. Res. 7, 163–174 (1956b).

    Google Scholar 

  • —, K. Sakino, T. Takahashi and T. Ichimura: Growth and food consumption in young mackerel Pneumatophorus japanicus (Houttuyn). Tohoku J. agric. Res. 7, 351–368 (1957).

    Google Scholar 

  • Hathaway, E. S.: The relation of temperature to the quantity of food consumed by fishes. Ecology 13, 423–434 (1927).

    Google Scholar 

  • Hunt, B. P.: Digestion rate and food consumption of Florida gar, warmouth, and largemouth bass. Trans. Am. Fish. Soc. 99, 206–210 (1960).

    Google Scholar 

  • Ivlev, V S.: Balance of energy in carps. Zool. Zh. 18, 303–318 (1939).

    Google Scholar 

  • —: The biological productivity of waters. [Transl. from Russ.]. Adv. contemp. Biol. (=Russ. Rev. Biol. = Usp. sovrem. Biol.) 19, 98–120 (1945).

    Google Scholar 

  • Jakovlev, V.: Vorläufige Mitteilung über die Untersuchung des Wassergehalts bei Schollen und Klieschen. Mitt. Inst. Fischbiol. Univ. Hamburg 7, 23–26 (1957).

    Google Scholar 

  • Job, S. V.: The oxygen consumption of Salvelinus fontinalis. Univ. Toronto Stud. biol. Ser. (=Publ. Ont. Fish. Res. Lab. 73) 61, 1–39 (1955).

    Google Scholar 

  • Kinne, O.: Growth, food intake and food conversion in a curyplastic fish exposed to different temperatures and salinities. Physiol. Zoöl. 33, 288–317 (1960).

    Google Scholar 

  • —: Irreversible nongenetic adaptation. Comp. Biochem. Physiol. 5, 265–282 (1962).

    Google Scholar 

  • —: The effect of temperature and salinity on marine and brackish water animals. 1. Temperature. Oceanogr. mar. Biol. A. Rev. 1, 301–340 (1963).

    Google Scholar 

  • —: Non-genetic adaptation to temperature and salinity. Helgoländer wiss Meeresunters. 9, 433–458 (1964).

    Google Scholar 

  • Kühl, H.: Nahrungsuntersuchungen an einigen Fischen im Elbe-Mündungsgebiet. Ber. dt. wiss. Kommn. Meeresforsch. 16, 90–104 (1961).

    Google Scholar 

  • Lundbeck, J.: Fischkunde für Jedermann, Vol. 1, 231 pp. Neumünster: Plambeck 1955 (Praxis der Fischwirtschaft).

    Google Scholar 

  • Maynard, A. L. and K. J. Loosli: Animal nutrition, 5th ed., 533 pp. New York: Mc-Graw Hill 1962.

    Google Scholar 

  • Menzel D. W.: Utilization of algae for growth by the angel fish. J. Cons. perm. int. Explor. Mer 24, 308–313 (1959).

    Google Scholar 

  • —: Utilization of food by a Bermuda reef fish Epinephelus guttatus. J. Cons. perm. int. Explor. Mer 25, 216–222 (1960).

    Google Scholar 

  • Moore, W. G.: Studies on the feeding habits of fishes. Ecology 22, 91–96 (1941).

    Google Scholar 

  • Nikolsky, G. V.: The ecology of fishes, [Transl. from Russ.]. 352 pp. New York: Academic Press 1963.

    Google Scholar 

  • Paine, R. T.: Endothermy in bomb calorimetry. Limnol. Oceanogr. 11, 126–129 (1966).

    Google Scholar 

  • Paloheimo, J. E. and L. M. Dickie: Food and growth of fishes. 2. Effects of food and temperature on the relation between metabolism and body weight. J. Fish. Res. Bd Can. 23, 869–908 (1966a).

    Google Scholar 

  • —: Food and growth of fishes. 3. Relations among food, body weight and growth efficiency. J. Fish. Res. Bd Can. 23, 1209–1248 (1966b).

    Google Scholar 

  • Pandian, T. J.: Food intake, absorption and conversion in the fish Ophiocephalus striatus. Helgoländer wiss. Meeresunters. 15, 637–647 (1967a).

    Google Scholar 

  • —: Intake, digestion, absorption and conversion of food in the fishes Megalops cyprinoides and Ophiocephalus striatus. Mar. Biol. 1, 16–32 (1967b).

    Google Scholar 

  • —: Transformation of food in the fish Megalops cyprinoides. 1. Influence of quality of food. Mar. Biol. 1, 60–64 (1967c).

    Google Scholar 

  • —: Transformation of food in the fish Megalops cyprinoides. 2. Influence of quantity of food. Mar. Biol. 1, 107–109 (1967d).

    Google Scholar 

  • Rühmer, S.: Fische und Nutztiere des Meeres, 256 pp. Ebenhausen/München: Rühmer 1954.

    Google Scholar 

  • Simpson, A. C.: Some observations on the mortality of fish and the distribution of plankton in the southern North Sea during the cold winter 1946–1947. J. Cons. perm. int. Explor. Mer 19, 150–177 (1953).

    Google Scholar 

  • Sindermann, C. J.: Diseases in marine fishes. Adv. mar. Biol. 4, 1–89 (1966).

    Google Scholar 

  • Smith, H. W.: The metabolism of the lung fish. 2. Effects of feeding on meat in the metabolic rate. J. cell. comp. Physiol. 6, 335–349 (1935).

    Google Scholar 

  • Sweet, J. G. and O. Kinne: The effects of various temperaturesalinity combinations on the body form of newly hatched Cyprinodon macularius (Teleostei). Helgoländer wiss. Meeresunters. 11, 49–69 (1964).

    Google Scholar 

  • Tsukuda, H.: Temperature adaptation in fishes. 3. Temperature tolerance of the guppy Lebistes reticulatus in relation to the rearing temperature before and after birth. Biol. J. Nara Women's Univ. 10, 11–14 (1960).

    Google Scholar 

  • — and T. Katayama: Temperature adaptation in fishes. 1. The influence of rearing temperature on the temperature tolerance, growth rate and body form. Seiro-Seitai 7, 113–122 (1957).

    Google Scholar 

  • Vinogradov, A. P.: The elementary composition of marine organism. [Transl. from Russ.]. 647 pp. New Haven: Yale University Press 1953. (Mem. Sears Fdn mar. Res. 2).

    Google Scholar 

  • Williams, W. E.: Food consumption and growth rates for large and small mouth bass in the laboratory aquaria. Trans. Am. Fish. Soc. 88, 125–127 (1959).

    Google Scholar 

  • Wimpenny, R. S.: The plaice, 145 pp. London: Arnold & Co. 1953.

    Google Scholar 

  • Winberg, G. G.: Rate of metabolism and food requirements of fishes, 253 pp. Minsk: Belorusskogo Nauchnye Trudy Belorusskogo Gosudarstvennogo Universiteta imeni V.I. Lenina 1956. (Transl. Fish. Res. Bd Can. No 362).

    Google Scholar 

  • Wood, E. M.: Method of protein studies with trout with applications of four selected diets. Ph. D. thesis, Ithaca, N.Y., Cornell Univ. (1952).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. K. Panikkab, New Delhi, and O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandian, T.J. Intake and coversion of food in the fish Limanda limanda exposed to different temperatures. Marine Biology 5, 1–17 (1970). https://doi.org/10.1007/BF00352487

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352487

Keywords

Navigation