Skip to main content
Log in

A putative human equivalent of the murine Xlr (X-linked, lymphocyte-regulated) protein

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The murine Xlr (X-linked, lymphocyte-regulated) gene family was originally identified by subtractive cDNA hybridization and cloning. It was found to encode two 30-kDa nuclear proteins expressed in lymphoid cells and in primary spermatocytes in a developmentally regulated manner. Our data show that, in contrast to most X-linked genes, the Xlr family is not conserved at the DNA level between mouse and human. However, using anti-Xlr antibodies, an Xlr-immunoreactive nuclear protein of Mr 30,000 was characterized in human RAJI B-lymphoblastoid cells by flow cytofluorimetry, by immunoblotting, and by immuno-cytolabeling. An Xlr-like molecule was also found to be expressed in human activated lymphocytes and in human primary spermatocytes, with a stage specificity similar to that known in the mouse. In contrast, no Xlr-immunoreactive protein was detected in a series of human tissues including brain, skeletal muscle, colon, liver, and kidney, revealing a tissue-specific expression pattern similar to that of murine Xlr. These findings most likely identify a human equivalent of Xlr. The Xlr genes belong to a small category of X-linked genes, including STS, MIC2, CSF2RA, and KAL, that diverge at the DNA level in human and in mice. Characterization of the human XLR gene(s) should now be feasible with anti-Xlr antibodies and an expression cloning system. It should provide new insights into the evolution of mammalian X Chromosome (Chr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergsagel, P.L., Timblin, C.R., Kozak, C.A., Kuehl, W.M. (1994). Sequence and expression of murine cDNAs encoding Xlr3a and Xlr3b, defining a new X-linked lymphocyte-regulated Xlr gene subfamily. Gene 150, 345–350.

    Google Scholar 

  • Blair, H.J., Reed, V., Laval, S.H., Boyd, Y. (1994). New insights into the man-mouse comparative map of the X chromosome. Genomics 19, 215–220.

    Google Scholar 

  • Calenda, A., Allenet, B., Escalier, D., Bach, J.-F., Garchon, H.-J. (1994). The meiosis-specific Xmr gene product is homologous to the lymphocyte Xlr protein and is a component of the XY body. EMBO J 13, 100–109.

    Google Scholar 

  • Cohen, D.I., Hedrick, S.M., Nielsen, E.A., D'Eustachio, P., Ruddle, F., Steinberg, A.D., Paul, W.E., Davis, M.M. (1985a). Isolation of a cDNA clone corresponding to an X-linked gene family (XLR) closely linked to the murine immunodeficiency disorder xid. Nature 314, 369–372.

    Google Scholar 

  • Cohen, D.I., Steinberg, A.D., Paul, W.E., Davis, M.M. (1985b). Expression of an X-linked gene family (XLR) in late-stage B cells and its alteration by the xid mutation. Nature 314, 372–374.

    Google Scholar 

  • De Saiut Basile, G., Fischer, A. (1991). X-linked immunodeficiencies: clues to genes involved in T- and B-cell differentiation. Immunol. Today 12, 456–461.

    Google Scholar 

  • Disteche, C.M., Brannan, C.I., Larsen, A., Adler, D.A., Schorderet, D.F., Gearing, D., Copeland, N.G., Jenkins, N.A., Park, L.S. (1992). The human pseudoautosomal GM-CSF receptor alpha-subunit gene is autosomal in mouse. Nature Genet. 1, 333–336.

    Google Scholar 

  • Dobson, M.J., Pearlman, R.E., Karaiskakis, A., Spyropoulos, B., Moens, P.B. (1994). Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J. Cell Sci. 107, 2749–2760.

    Google Scholar 

  • Feinberg, A.P., Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13.

    Google Scholar 

  • Fischer, A. (1993). Primary T-cell immunodeficiencies. Curr. Opin. Immunol. 5, 569–578.

    Google Scholar 

  • Franco, B., Guioli, s., Pragliola, A., Incerti, B., Bardoni, B., Tonlorenzi, R., Carrozzo, R., Maestrini, E., Pieretti, M., Taillon Miller, P., Brown, C.J., Willard, H.F., Lawrence, C., Persico, M.G., Camerino, G., Ballabio, A. (1991). A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353, 529–536.

    Google Scholar 

  • Garchon, H.-J. (1991). The Xlr (X-linked lymphocyte-regulated) gene family. A candidate locus for an X-linked primary immunodeficiency. Immunodefic. Rev. 2, 283–302.

    Google Scholar 

  • Garchon, H.-J., Davis, M.M. (1989). The XLR gene product defines a novel set of proteins stabilized in the nucleus by zinc ions. J. Cell Biol. 108, 779–787.

    Google Scholar 

  • Garchon, H.-J., Loh, E., Ho, W.Y., Amar, L., Avner, P., Davis, M.M. (1989). The XLR sequence family: dispersion on the X and Y chromosomes of a large set of closely related sequences, most of which are pseudogenes. Nucleic Acids Res. 17, 9871–9888.

    Google Scholar 

  • Goodfellow, P.J., Darling, S.M., Thomas, N.S., Goodfellow, P.N. (1986). A pseudoautosomal gene in man. Science 234, 740–743.

    Google Scholar 

  • Gough, N.M., Gearing, D.P., Nicola, N.A., Baker, E., Pritchard, M., Callen, D.F., Sutherland, G.R. (1990). Localization of the human GM-CSF receptor gene to the X-Y pseudoautosomal region. Nature 345, 734–736.

    Google Scholar 

  • Hammarström, L., Gillner, M., Edvard Smith, C.I. (1993). Molecular basis for human immunodeficiencies. Curr. Opin. Immunol. 5, 579–584.

    Google Scholar 

  • Hartung, M., Wachtler, F., de Lanversin, A., Fouet, C., Schwarzacher, H.G., Stahl, A. (1990). Sequential changes in the nucleoli of human spermatogonia with special reference to rDNA location and transcription. Tissue Cell 22, 25–37.

    Google Scholar 

  • Herman, G.E., Boyd, Y., Chapman, V., Chatterjee, A., Brown, S.D.M. (1994). Mouse X-chromosome. Mamm. Genome 5(Suppl.), S276-S288.

    Google Scholar 

  • Keitges, E., Rivest, M., Siniscalco, M., Gartler, S.M. (1985). X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Nature 315, 226–227.

    Google Scholar 

  • Lammers, J.H., Offenberg, H.H., Van Aalderen, M., Vink, A.C., Dietrich, A.J., Heyting, C. (1994). The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol. Cell. Biol. 14, 1137–1146.

    Google Scholar 

  • Laval, S.H., Boyd, Y. (1993a). Novel sequences conserved on the human and mouse X-chromosomes. Genomics 15, 483–491.

    Google Scholar 

  • Laval, S.H., Boyd, Y. (1993b). Partial inversion of gene order within a homologous segment on the X-chromosome. Mamm. Genome 4, 119–123.

    Google Scholar 

  • Legouis, R., Hardelin, J.-P., Levilliers, J., Claverie, J.-M., Compain, S., Wunderle, V., Millasseau, P., Le Paslier, D., Cohen, D., Caterina, D., Bougueleret, L., Delemaare-Van de Waal, H., Lutfalla, G., Weissenbach, J., Petit, C. (1991). The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435.

    Google Scholar 

  • Legouis, R., Cohen-Salmon, M., Del Castillo, I., Levilliers, J., Capy, L., Mornow, J.P., Petit, C. (1993). Characterization of the chicken and quail homologues of the human gene responsible for the X-linked Kallmann syndrome. Genomics 17, 516–518.

    Google Scholar 

  • Lyon, M.F., Peters, J., Glenister, P.H., Ball, S., Wright, E. (1990). The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc. Natl. Acad. Sci. USA 87, 2433–2437.

    Google Scholar 

  • Mandel, J.L., Monaco, A.P., Nelson, D.L., Schlessinger, D., Willard, H. (1992). Genome analysis and the human X-chromosome. Science 258, 103–109.

    Google Scholar 

  • Mullins, L.J., Stephenson, D.A., Grant, S.G., Chapman, V.M. (1990). Efficient linkage of 10 loci in the proximal region of the mouse x-chromosome. Genomics 7, 19–30.

    Google Scholar 

  • Nasir, J., Fisher, E.M.C., Brockdorff, N., Disteche, C.M., Lyon, M.F., Brown, S.D.M. (1990). Unusual molecular characteristics of a repeat sequence island within a Giemsa-positive band on the mouse X chromosome. Proc. Natl. Acad. Sci. USA 87, 399–403.

    Google Scholar 

  • O'Brien, S.J., Peters, J., Searle, A., Womack, J., Marshall Graves, J. (1993). Report of the Committee on Comparative Gene Mapping. In Chromosome Coordinating Meeting 1992, A.J. Cuticchia, P.L. Pearson, eds. (CH-4009 Basel: Karger), pp 758–809.

    Google Scholar 

  • Ohno, S. (1969). Evolution of sex chromosomes in mammals. Annu. Rev. Genet. 3, 495–524.

    Google Scholar 

  • Park, L.S., Martin, U., Sorensen, R., Luhr, S., Morrissey, P.J., Cosman, D., Larsen, A. (1992). Cloning of the low-affinity murine granulocyte-macrophage colony-stimulating factor receptor and reconstitution of a high-affinity receptor complex. Proc. Natl. Acad. Sci. USA 89, 4295–4299.

    Google Scholar 

  • Rawlings, D.J., Saffran, D.C., Tsukada, S., Largaespada, D.A., Grimaldi, J.C., Cohen, L., Mohr, R.N., Bazan, J.F., Howard, M., Copeland, N.G., Jenkins, N.A., Witte, O.N. (1993). Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361.

    Google Scholar 

  • Rugarli, E.I., Lutz, B., Kuratani, S.C., Wawersik, S., Borsani, G., Ballabio, A., Eichele, G. (1993). Expression of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nature Genet 4, 19–26.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Scher, I. (1982). The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv. Immunol. 33, 1–71.

    Google Scholar 

  • Siegel, J.N., Turner, C.A., Klinman, D.M., Wilkinson, M., Steinberg, A.D., MacLeod, C.L., Paul, W.E., Davis, M.M., Cohen, D.I. (1987). Sequence analysis and expression of an X-linked, lymphocyte-regulated gene family (XLR). J. Exp. Med. 166, 1702–1715.

    Google Scholar 

  • Thomas, J.D., Sideras, P., Smith, C.I.E., Vorechovsky, I., Chapman, V., Paul, W.E. (1993). Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358.

    Google Scholar 

  • Yen, P.H., Allen, E., Marsh, B., Mohandas, T., Wang, N., Taggart, R.T., Shapiro, L.J. (1987). Cloning and expression of steroid sulfatase cDNA and the frequent occurrence of deletions in STS deficiency: implications for X-Y interchange. Cell 49, 443–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allenet, B., Escalier, D. & Garchon, H.J. A putative human equivalent of the murine Xlr (X-linked, lymphocyte-regulated) protein. Mammalian Genome 6, 640–644 (1995). https://doi.org/10.1007/BF00352372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352372

Keywords

Navigation