Skip to main content
Log in

Localized expression of a novel micropia-like element in the blastoderm of Drosophila melanogaster is dependent on the anterior morphogen bicoid

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We have identified a novel transposon-like element of Drosophila melanogaster that is present in approximately 20 copies in the genome. It codes for a polyprotein containing the diagnostic sequence motifs for a nucleic acid binding CCHC protein, a proteinase, a reverse transcriptase and an integrase as typically found in retroviruses. Owing to its early expression in the blastoderm embryo, and its close relationship to micropia, a previously identified Drosophila retrotransposon, we termed the novel element “blastopia”. The spatially restricted expression of blastopia transcripts in head anlagen of the blastoderm embryo is under the direct or indirect control of the Drosophila morphogen bicoid, which is normally required to establish the anterior pattern elements in the embryo. Our results suggest that a blastopia element acts as an “enhancer trap”, and there-by participates in the control of an as yet unidentified gene normally expressed in the head anlagen of the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkhipova IR, Ilyin YV (1992) Control of transcription of Drosophila retrotransposons. Bioessays 14:161–168

    Google Scholar 

  • Arkhipova IR, Mazo AM, Cherkasova VA, Gorelova TV, Schuppe NG, Ilyin YV (1986) The steps of reverse transcription of Drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs. Cell 44:555–563

    Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7:1749–1756

    Google Scholar 

  • Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29:995–1004

    Google Scholar 

  • Brookman JJ, Toosy AT, Shashidhara LS, White RA (1992) The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development 116:1185–1192

    Google Scholar 

  • Carbonare BD, Gehring WJ (1985) Excision of copia element in a revertant of the white-apricot mutation of Drosophila melanogaster leaves behind one long-terminal repeat. Mol Gen Genet 199:1–6

    Google Scholar 

  • Covey SN (1986) Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res 14:623–633

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Driever W, Nüsslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104

    Google Scholar 

  • Driever W, Thoma G, Nüsslein-Volhard C (1989) Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340:363–367

    Google Scholar 

  • Emori Y, Shiba T, Kanaya S, Inouye S, Yuki S, Saigo K (1985) The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. Nature 315:773–776

    Google Scholar 

  • Finnegan DJ (1990) Transposable elements and DNA transposition in eukaryotes. Curr Opin Cell Biol 2:471–477

    Google Scholar 

  • Finnegan DJ, Fawcett DH (1986) Transposable elements in Drosophila melanogaster. Oxf Surv Eukaryotic Genes 3:1–62

    Google Scholar 

  • Flavell AJ (1984) Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature 310:514–516

    Google Scholar 

  • Flavell AJ, Ruby SW, Toole JJ, Roberts BE, Rubin GM (1980) Translation and developmental regulation of RNA encoded by the eukaryotic transposable element copia. Proc Natl Acad Sci USA 77:7107–7111

    Google Scholar 

  • Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo. Nature 324:120–125

    Google Scholar 

  • Gorelick RJ, Henderson LE, Hanser JP, Rein A (1988) Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci USA 85:8420–8424

    Google Scholar 

  • Green LM, Berg JM (1989) A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure. Proc Natl Acad Sci USA 86:4047–4051

    Google Scholar 

  • Henderson LE, Copeland TD, Sowder RC, Smythers GW, Oroszlan S (1981) Primary structure of the low molecular weight nucleic acid-binding proteins of murine leukemia viruses. J Biol Chem 256:8400–8406

    Google Scholar 

  • Hennig W, Huijser P, Vogt P, Jäckle H, Edström JE (1983) Molecular cloning of microdissected lampbrush loop DNA sequences of Drosophila hydei. EMBO J 2:1741–1746

    Google Scholar 

  • Huijser P, Kirchhoff C, Lankenau DH, Hennig W (1988) Retrotransposon-like sequences are expressed in Y chromosomal lampbrush loops of Drosophila hydei. J Mol Biol 203:689–897

    Google Scholar 

  • Jäckle H, Hoch M, Pankratz MJ, Gerwin N, Sauer F, Brönner G (1992) Transcriptional control by Drosophila gap genes. J Cell Sci [Suppl] 16:39–51

    Google Scholar 

  • Jentoft JE, Smith LM, Fu XD, Johnson M, Leis J (1988) Conserved cysteine and histidine residues of the avian myeloblastosis virus nucleocapsid protein are essential for viral replication but are not “zinc-binding fingers”. Proc Natl Acad Sci USA 85:7094–7098

    Google Scholar 

  • Lankenau DH, Hennig W (1990) Micropia-Dm2, the nucleotide sequence of a rearranged retrotransposon from Drosophila melanogaster. Nucleic Acids Res 18:4265–4266

    Google Scholar 

  • Lankenau DH, Huijser P, Jansen E, Miedema K, Hennig W (1988) Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol 204:233–246

    Google Scholar 

  • Mizrokhi LJ, Obolenkova LA, Priimägi AF, Ilyin YV, Gerasimova TI, Georgiev GP (1985) The nature of unstable insertion mutations and reversions in the locus cut of Drosophila melanogaster: molecular mechanism of transposition memory. EMBO J 4:3781–3787

    Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5:1630–1638

    Google Scholar 

  • Parkhurst SM, Corces VG (1987) Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J 6:419–424

    Google Scholar 

  • Rosenberg UB, Schröder C, Preiss A, Kienlin A, Cote S, Riede I, Jäckle H (1986) Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA. Nature 319:336–339

    Google Scholar 

  • Rothe M, Pehl M, Taubert H, Jäckle H (1992) Loss of gene function through rapid mitotic cycles in the Drosophila embryo. Nature 359:156–159

    Google Scholar 

  • Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29:987–994

    Google Scholar 

  • Rubin GM, Spradling AC (1983) Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res 11:6341–6351

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schuh R, Aicher W, Gaul U, Cote S, Preiss A, Maier D, Seifert E, Nauber U, Schröder C, Kemler R, Jäckle H (1986) A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell 47:1025–1032

    Google Scholar 

  • Schwartz HE, Lockett TJ, Young MW (1982) Analysis of transcripts from two families of nomadic DNA. J Mol Biol 157:49–68

    Google Scholar 

  • Shermoen AW, O'Farrell PH (1991) Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67:303–310

    Google Scholar 

  • Shinnick TM, Lerner RA, Sutcliffe JG (1981) Nucleotide sequence of Moloney murine leukaemia virus. Nature 293:543–548

    Google Scholar 

  • Slabaugh MB, Roseman NA (1989) Retroviral protease-like gene in the vaccinia virus genome. Proc Natl Acad Sci USA 86:4152–4155

    Google Scholar 

  • Spradling AC, Rubin GM (1981) Drosophila genome organization: conserved and dynamic aspects. Annu Rev Genet 15:219–264

    Google Scholar 

  • St Johnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–219

    Google Scholar 

  • Struhl G, Struhl K, Macdonald PM (1989) The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–1273

    Google Scholar 

  • Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    Google Scholar 

  • Wimmer EA, Jäckle H, Pfeifle C, Cohen SM (1993) A Drosophila homologue of human Sp1 is a head-specific segmentation gene. Nature 366:690–694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frommer, G., Schuh, R. & Jäckle, H. Localized expression of a novel micropia-like element in the blastoderm of Drosophila melanogaster is dependent on the anterior morphogen bicoid . Chromosoma 103, 82–89 (1994). https://doi.org/10.1007/BF00352316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352316

Keywords

Navigation