Skip to main content
Log in

Molecular cloning and immunolocalization of two variants of the major basic nuclear protein (HCc) from the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta)

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Two clones that encode variants (HCc1 and HCc2) of the major basic nuclear protein of the dinoflagellate Crypthecodinium cohnii, were identified by immunoscreening of a cDNA expression library. The first clone carries a full-length cDNA with an open reading frame (HCc1) encoding 113 amino acids. The cDNA from the second clone lacks some of the 5′ end, and the coding sequence is only 102 residues. The two proteins display 77% sequence similarity and their NH2-ends are homologous to the NH2-peptide of the HCc protein determined by P. Rizzo. The amino acid composition, which confirms the basic nature of lysine-rich HCc proteins, differs markedly from other known DNA-binding proteins such as histones, HMGs or prokaryotic histone-like proteins. No convincing homology was found with other proteins. HCc antigens were localized on C. cohnii by immunofluorescence, and by electron microscopy (EM) with immunogold labelling. HCc proteins are mainly detected at the periphery of the permanently condensed chromosomes, where active chromatin is located, as well as in the nucleolar organizing region (NOR). This suggests that these basic, non-histone proteins, with a moderate affinity for DNA, are involved at some level in the regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DM, Herzog M, Grahber A (1991) Separation of coding sequences from structural DNA in the dinoflagellate Crypthecodinium cohnii. Mar Mol Biol Biotechnol (in press)

  • Bodansky, S, Mintz, LB, Holmes, DS (1979) The mesocaryote Gyrodinium cohnii lacks nucleosomes. Biochem Biophys Res Commun 88:1329–1336

    Google Scholar 

  • Caput, D, Beutler, B, Hartog, K, Thayer, R, Brown-Shimer, S, Cerami, A (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83:1670–1674

    Google Scholar 

  • Cavalier-Smith, T (1981) The origin and early evolution of the eukaryotic cell. Soc Gen Microbiol Symp 32:33–84

    Google Scholar 

  • Chartier, F, Laine, B, Bélaïche, D, Sautière, P (1989) Primary structure of the chromosomal proteins MC1a, MC1b and MC1c from the archaebacterium Methanothrix soehngenii. J Biol Chem 264:17006–17015

    Google Scholar 

  • Crevel, G, Laine, B, Sautière, P, Galleron, C (1989) Isolation and characterization of DNA-binding proteins from the cyanobacterium Synechococcus sp. PCC 7002 and from spinach chloroplasts. Biochim Biophys Acta 1007:36–43

    Google Scholar 

  • DeLange, RJ, Green, GR, Searcy, DG (1981 a) A histone-like protein (HTa) from Thermoplasma acidophilum. I. Purification and properties. J Biol Chem 256:900–904

    Google Scholar 

  • DeLange, RJ, Williams, LC, Searcy, DG (1981 b) A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequence. J Biol Chem 256:905–911

    Google Scholar 

  • Dodge, JD (1965) Chromosome structure in the dinoflagellates and the problem of the mesocaryotic cell. Excerpta Med Int Congr Ser 91:339–341

    Google Scholar 

  • Doenecke, D, Toenjes, R (1984) Conserved dyad symmetry structures at the 3′ end of H5 histone genes: Analysis of the duck H5 gene. J Mol Biol 178:121–135

    Google Scholar 

  • Drlica, K, Rouvière-Yaniv, J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301–319

    Google Scholar 

  • Dumas, JP, Ninio, J (1882) Efficient algorithm for folding and comparing nucleic acids sequences. Nucleic Acids Res 10:197–206

    Google Scholar 

  • Garnier, J, Ogsthorpe, DJ, Robson, B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Google Scholar 

  • Géraud ML, Sala-Rovira M, Herzog M, Soyer-Gobillard MO (1991) Immunocytochemical localization of the DNA-binding protein HCc during the cell cycle of the histone-less dinoflagellate protoctist Crypthecodinium cohnii B. Biol Cell 71, in press

  • Giesbrecht, P (1965) Uber das Ordnungsprinzip in den Chromosomes von Dinoflagellaten und Bakterien. Zentralbl Bakteriol Abt Orig 196:516–519

    Google Scholar 

  • Goad, W, Kanehisha, MI (1982) Pattern recognition in nucleic acids sequences: I A general method for finding local homologies and symmetries. Nucleic Acids Res 10:247–264

    Google Scholar 

  • Goodwin GH, Nicolas RH, Wright CA, Zavou S (1985) The structures and functions of the low molecular weight HMG proteins. In: Reeck GR, Goodwin GH, Puigdomènech P (eds) Chromosomal proteins and gene expression. (NATO ASI Series, Life Sciences vol 101) pp 221–238

  • Gourret, JP (1978) Description et interpretation des nucleoïdes structurés observés dans des bactéroïdes de Rhizobium. Biol Cell 32:299–306

    Google Scholar 

  • Hamkalo, BA, Rattner, JC (1977) The structure of a mesokaryote chromosome. Chromosoma 60:39–47

    Google Scholar 

  • Herzog, M, Maroteaux, L (1986) Dinoflagellate 17 S ribosomal sequence inferred from the gene sequence; Evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648

    Google Scholar 

  • Herzog, M, Soyer, MO (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans E. Eur J Cell Biol 27:151–155

    Google Scholar 

  • Herzog, M, vonBoletzky, S, Soyer, MO (1984) Ultrastructural and biochemical nuclear aspects of eukaryote classification: Independent evolution of the dinoflagellates as a sister group of the actual eukaryotes? Orig Life 13:205–215

    Google Scholar 

  • Lenaers, G, Maroteaux, L, Michot, B, Herzog, M (1989) Dinoflagellates in evolution. A molecular phylogenetic analysis of largesubunit ribosomal RNA. J Mol Evol 29:40–51

    Google Scholar 

  • Lenaers G, Scholin C, Bhaud Y, Saint-Hilaire D, Herzog M (1991) A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J Mol Evol (in press)

  • Lipman, DJ, Wilbur, WJ, Smith, JF, Waterman, MS (1984) On the statistical significance of nucleic acid similarities. Nucleic Acids Res 12:215–226

    Google Scholar 

  • Mayes, ELV (1984) Immunoaffinity purification of protein antigens. In: Walker, JM (ed) Methods in molecular biology. 1. Proteins, Humana Press, Clifton, pp 13–20

    Google Scholar 

  • Mead, DA, Szczesna-Skorupa, E, Kemper, B (1986) Single-stranded DNA “blue” T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng 1:67–74

    Google Scholar 

  • Pettijohn, DE (1988) Histone-like proteins and bacterial chromosome structure. J Biol Chem 263:12793–12796

    Google Scholar 

  • Rizzo, PJ, Nooden, LD (1974) Partial characterization of dinoflagellate chromosomal proteins. Biochim Biophys Acta 349:415–427

    Google Scholar 

  • Rizzo, PJ, Burghardt, RC (1980) Chromatin structure in the unicellular algae Olithodiscus luteus, Crypthecodinium cohnii and Peridinium balticum. Chromosoma 76:91–99

    Google Scholar 

  • Rizzo, PJ (1981) Comparative aspects of basic nuclear proteins in dinoflagellates. BioSystems 14:433–443

    Google Scholar 

  • Rizzo, PJ, Burghardt, RC (1982) Histone-like proteins and chromatin structure in the wall-less dinoflagellate Gymnodinium nelsoni. BioSystems 15:27–34

    Google Scholar 

  • Rizzo, PJ, Morris, RL (1984) Some properties of the histone-like protein from Crypthecodinium cohnii (HCc). BioSystems 16:211–216

    Google Scholar 

  • Rizzo, PJ, Choi, J, Morris, RL (1984) The major histone-like protein from the nonphotosynthetic dinoflagellate Crypthecodinium cohnii (Pyrrhophyta) is present in stationary phase. J Phycol 20:95–100

    Google Scholar 

  • Rizzo PJ (1987) Biochemistry of the dinoflagellate nucleus. In: Taylor FJR (ed) The biology of dinoflagellates. (Botanical monographs, vol 21) Blackwell, pp 143–173

  • Rizzo, PJ, Morris, RL, Zweidler, A (1988) The histones of the endosymbiont alga of Peridinium balticum (Dinophyceae). BioSystems 21:231–238

    Google Scholar 

  • Sambrook, J, Fritsch, EF, Maniatis, T (1989) Molecular cloning, A laboratory manual. Cold Spring Harbor Laboratory, NY

    Google Scholar 

  • Sigee, DC (1984) Structural DNA and genetically active DNA in dinoflagellate chromosomes. BioSystems 16:203–210

    Google Scholar 

  • Sommerville, J (1985) Organizing the nucleolus. Nature 318:410–411

    Google Scholar 

  • Sommerville, J (1986) Nucleolar structure and ribosome biogenesis. TIBS 11:438–442

    Google Scholar 

  • Soyer, MO, Haapala, OK (1974a) Structural changes of Dinoflagellate chromosomes by pronase and ribonuclease. Chromosoma 47:179–192

    Google Scholar 

  • Soyer, MO, Haapala, OK (1974b) Division and function of dinoflagellate chromosomes. J Microsc 19:137–146

    Google Scholar 

  • Soyer-Gobillard, MO, Géraud, ML, Coulaud, D, Barray, M, Théveny, B, Révet, B, Delain, E (1990) Location of B- and Z-DNA in the chromosome of a primitive eukaryote dinoflagellate. J Cell Biol 111:293–308

    Google Scholar 

  • Spiker, S, Key, JL, Wakim, B (1976) Identification and fractionation of plant histones. Arch Biochem Biophys 176:510–518

    Google Scholar 

  • Steele RE (1980) Aspects of the composition and organization of dinoflagellate DNA. PhD thesis dissertation, Yale University

  • Taylor, FJR (1978) Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. BioSystems 10:67–89

    Google Scholar 

  • Tokuyasu, KT (1989) Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21:163–171

    Google Scholar 

  • Tuttle, R, Loeblich, AR (1975) An optimal growth medium for the dinoflagellate Crypthecodinium cohnii. Phycologia 14:1–8

    Google Scholar 

  • Vernet, G, Sala-Rovira, M, Maeder, M, Jacques, F, Herzog, M (1990) Basic nuclear proteins of the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta): two-dimensional electrophoresis and DNA-binding properties. Biochim Biophys Acta 1048:281–289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

by M. Trendelenburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala-Rovira, M., Geraud, M.L., Caput, D. et al. Molecular cloning and immunolocalization of two variants of the major basic nuclear protein (HCc) from the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta). Chromosoma 100, 510–518 (1991). https://doi.org/10.1007/BF00352201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352201

Keywords

Navigation