Skip to main content
Log in

Transport property and battery discharge characteristic studies on 1−x(0.75Agl∶0.25AgCl)∶ xAl2O3 composite electrolyte system

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various experimental studies on a new fast Ag+ ion-conducting composite electrolyte system: (1−x) (0.75Agl∶0.25AgCl)∶xAl2O3 are reported. Undried Al2O3 particles of size <10 Μm were used. The conventional matrix material Agl has been replaced by a new mixed 0.75Agl∶0.25AgCl quenched and/or annealed host compound. Conductivity enhancements ∼10 from the annealed host and ∼3 times from the quenched host obtained for the composition 0.7(0.75Agl∶0.25AgCl)∶0.3Al2O3, can be explained on the basis of the space charge interface mechanism. Direct measurements of ionic mobility Μ as σ function of temperature together with the conductivity σ were carried out for the best composition. Subsequently, the mobile ion concentration n values were calculated from Μ and a data. The value of heat of ion transport q* obtained from the plot of thermoelectric power θ versus 1/T supports Rice and Roth's free ion theory for superionic conductors. Using the best composition as an electrolyte various solid state batteries were fabricated and studied at room temperature with different cathode preparations and load conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Maier, in “Solid state ionics: materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 111.

    Google Scholar 

  2. A. K. Shukla and V. Sharma, ibid.“ p. 91.

    Google Scholar 

  3. J. Maier, in “Superionic solids and solid electrolytes — recent trends”, edited by A. L. Laskar and S. Chandra (Academic Press, New York, 1989) p. 137.

    Chapter  Google Scholar 

  4. J. B. Wagner, in “High conductivity solid ionic conductors — recent trends and applications”, edited by T. Takahashi (World Scientific, Singapore, 1989) p. 146.

    Google Scholar 

  5. N. J. Dudney, Ann. Rev. Mater. Sci. 19 (1989) 103.

    Article  CAS  Google Scholar 

  6. F. W. Poulsen, in “Transport-structure relations in fast ion and mixed conductors” edited by F. W. Poulsen, N. H. Andersen, K. Clausen, S. Skaarup and O. T. Sorensen (Riso Nat. Lab., Roskilde, Denmark, 1985) p. 67.

    Google Scholar 

  7. T. Jow and J. B. Wagner, Jr, J. Electrochem. Soc. 126 (1979) 1963.

    Article  CAS  Google Scholar 

  8. K. Shahi and J. B. Wagner, Jr, ibid. 128 (1981) 6.

    Article  CAS  Google Scholar 

  9. C. C. Liang, A. V. Joshi and N. E. Hamilton, J. Appl. Electrochem. 8 (1978) 445.

    Article  CAS  Google Scholar 

  10. W. Jander, Angew. Chem. 42 (1929) 462.

    Article  CAS  Google Scholar 

  11. C. C. Liang, J. Electrochem. Soc. 120 (1973) 1289.

    Article  CAS  Google Scholar 

  12. M. F. Bell, M. Sayer, D. S. Smith and P. S. Nicholson, Solid State Ionics 9/10 (1983) 731.

    Article  Google Scholar 

  13. A. Bunde, W. Dieterich and E. Roman, Phys. Rev. Lett. 55 (1985) 5.

    Article  CAS  Google Scholar 

  14. R. Blender and W. Dieterich, J. Phys. C. 20 (1987) 6113.

    Article  Google Scholar 

  15. N. F. Uvarov, V. P. Isupov, V. Sharma and A. K. Shukla, Solid State Ionics 51 (1992) 41.

    Article  CAS  Google Scholar 

  16. U. Lauer and J. Maier, Ber. Bunsenges. Phys. Chem. 96 (1992) 111.

    Article  CAS  Google Scholar 

  17. R. C. Agrawal, R. K. Gupta, R. Kumar and A. Kumar, J. Mater. Sci. 29 (1994) 3673.

    Article  CAS  Google Scholar 

  18. M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi and Z. Ontaki, J. Appl. Phys. 57 (1985) 123.

    Article  CAS  Google Scholar 

  19. S. Chandra, S. K. Tolpadi and S. A. Hashmi, Solid State Ionics 28/30 (1988) 651.

    Article  Google Scholar 

  20. R. C. Agrawal, K. Kathal, R. Chandola and R. K. Gupta, in “Solid state ionics: materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 363.

    Google Scholar 

  21. R. C. Agrawal, K. Kathal and R. K. Gupta, Solid. State Ionics 74 (1994) 137.

    Article  CAS  Google Scholar 

  22. R. C. Agrawal and R. Kumar, J. Phys. D. 27 (1994) 2431.

    Article  CAS  Google Scholar 

  23. K. M. Shaju and S. Chandra, Phys. Stat. Sol. (b) 181 (1994) 301.

    Article  CAS  Google Scholar 

  24. K. Shahi, Phys. Stat. Sol. (a) 41 (1977) 11.

    Article  CAS  Google Scholar 

  25. S. M. Girvin, J. Sol. Stat. Chem. 25 (1978) 65.

    Article  CAS  Google Scholar 

  26. M. J. Rice and W. L. Roth, ibid. 4 (1972) 294.

    Article  CAS  Google Scholar 

  27. S. Chandra and R. C. Agrawal, “Solid state battery — prospects and limitations” (National Academy of Sciences, India: Golden Jubilee Commemoration Volume, 1980) p. 1.

    Google Scholar 

  28. P. HAGENMULLER and W. van GOOL (editors), “Solid electrolytes”, Material Science Series (Academic Press, 1978).

  29. K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104 (1957) 308 & 379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, R.C., Gupta, R.K. Transport property and battery discharge characteristic studies on 1−x(0.75Agl∶0.25AgCl)∶ xAl2O3 composite electrolyte system. JOURNAL OF MATERIALS SCIENCE 30, 3612–3618 (1995). https://doi.org/10.1007/BF00351874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351874

Keywords

Navigation