Skip to main content
Log in

Approaching the function of new genes by detection of their potential upstream activation sequences in Saccharomyces cerevisiae: application to chromosome III

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The systematic sequencing of the yeast genome reveals the presence of many potential genes of unknown function. One way to approach their function is to define which regulatory system controls their transcription. This can also be accomplished by the detection of an upstream activation sequence (UAS). Such a detection can be done by computer, provided that the definition of a UAS includes sufficient and precise rules. We have established such rules for the UASs of the GAL4, RAP1 (RPG box), GCN4, and the HAP2/HAP3/HAP4 regulatory proteins, as well as for a motif (PAC) frequently found upstream of the genes of the RNA polymerase A and C subunits. These rules were applied to the chromosome III DNA sequence, and gave precise predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bork P, Ouzounis C, Sander C, Scharf M, Schneider R, Sonnhammer E (1992) Protein Sci 1:1677–1690

    Google Scholar 

  • Bowman SB, Zaman Z, Collinson P, Brown AJP, Dawes IW (1992) Mol Gen Genet 231:296–303

    Google Scholar 

  • Bram RJ, Lue NF, Kornberg RD (1986) EMBO J 5:603–608

    Google Scholar 

  • Bucher P (1990) J Mol Biol 212:563–578

    Google Scholar 

  • Buchman AR, Lue NF, Kornberg RD (1988) Mol Cell Biol 8:5086–5099

    Google Scholar 

  • Capieaux E, Vignais M-L, Sentenac A, Goffeau A (1989) J Biol Chem 264:7437–7446

    Google Scholar 

  • Danchim A, Médigue C, Gascuel O, Soldano H, Hénaut A (1991) Res Microbiol 142:913–916

    Google Scholar 

  • Dequard-Chablat M, Riva M, Carles C, Sentenac A (1991) J Biol Chem 266:15300–15307

    Google Scholar 

  • Dessen P, Fondrat C, Valencien C, Mugnier C (1990) CABIOS 6:355–356

    Google Scholar 

  • Falco SC, Dumas KS, Livak KJ (1985) Nucleic Acids Res 13:4011–4027

    Google Scholar 

  • Fondrat C, Dessen P, Le Beux P (1986) Nucleic Acids Res 14:197–204

    Google Scholar 

  • Forsburg SL, Guarente L (1988) Mol Cell Biol 8:647–654

    Google Scholar 

  • Giniger E, Varnum SM, Ptashne M (1985) Cell 40:767–774

    Google Scholar 

  • Hill DE, Hope IA, Macke JP, Struhl K (1986) Science 234:451–457

    Google Scholar 

  • Hope IA, Struhl K (1985) Cell 43:177–188

    Google Scholar 

  • IUPAC-IUB Nomenclature commitee (1985) Eur J Biochem 150:1–5

    Google Scholar 

  • Lambertus PW, Mager WH, Nieuwint RTM, Wassenaar GM, Van der Kuyl AC, Murre JJ, Hoekman MFM, Brockhoff PGM, Planta RJ (1987) Nucleic Acids Res 15:6037–6048

    Google Scholar 

  • Leer RJ, Van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1985) Curr Genet 9:273–277

    Google Scholar 

  • Marmorstein R, Carey M, Ptashme M, Harrison SC (1992) Nature 356:408–414

    Google Scholar 

  • Nakai K, Kanehisa M (1992) Genomics 14:897–911

    Google Scholar 

  • Oechsner U, Hermann H, Zollner A, Haid A, Bandlow W (1991) Mol Gen Genet 231:447–459

    Google Scholar 

  • Olesen J, Hahn S, Guarente L (1987) Cell 51:953–961

    Google Scholar 

  • Oliver S, et al. (1992) Nature 357:38–46

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Planta RJ, Raué HA (1988) Trends Genet 4:64–68

    Google Scholar 

  • Repetto B, Tzagoloff A (1989) Mol Cell Biol 9:2695–2705

    Google Scholar 

  • Repetto B, Tzagoloff A (1990) Mol Cell Biol 10:4221–4232

    Google Scholar 

  • Rotenberg MO, Woolford JL (1986) Mol Cell Biol 6:674–687

    Google Scholar 

  • Shore D, Nasmyth K (1987) Cell 51:721–723

    Google Scholar 

  • Stormo GD (1990) Methods Enzymol 13:211–219

    Google Scholar 

  • Tanaka S, Isono K (1993) Nucleic Acids Res 21:1149–1153

    Google Scholar 

  • Trawick JD, Rogness C, Poyton RO (1989) Mol Cell Biol 9:5350–5358

    Google Scholar 

  • Vignais M-L, Huet J, Buhler J-M, Sentenac A (1990) J Biol Chem 265:14669–15674

    Google Scholar 

  • Werner M, Feller A, Pierard A (1985) Eur J Biochem 146:371–381

    Google Scholar 

  • Yoshikawa A, Isono K (1990) Yeast 6:383–401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Goffeau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fondrat, C., Kalogeropoulos, A. Approaching the function of new genes by detection of their potential upstream activation sequences in Saccharomyces cerevisiae: application to chromosome III. Curr Genet 25, 396–406 (1994). https://doi.org/10.1007/BF00351777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351777

Key words

Navigation