Skip to main content
Log in

The higher plant nad5 mitochondrial gene: a conserved discontinuous transcription pattern

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The single copy nad5 gene has been identified in the mitochondrial genomes of cauliflower, chicory, potato, fennel, and common bean. In these five dicot species the same organization as in Oenothera, Arabidosis, wheat, and maize has been found for the gene: it consists of five exons organized into three independent groups. The first group comprises exons I and II, separated by a highly conserved group II intron, while the second group consists of exon III only. In the third group exons IV and V are separated by a group II intron of variable, species-specific, length. Transcription analysis of the nad5 gene in chicory and in cauliflower shows that the five exons are assembled as a mature mRNA through intermolecular interactions and multiple splicing events. Comparison of transcription in the gene with that of wheat and maize suggests that a common mechanism exists in higher plants for nad5 transcript processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonen L, Boer PH, Gray MW (1984) EMBO J 3:2531–2536

    Google Scholar 

  • Brown TA, Constable A, Waring RB, Scazzocchio C, Davies RW (1989) Nucleic Acids Res 17:4317

    Google Scholar 

  • Chapdelaine Y, Bonen L (1991) Cell 65:465–472

    Google Scholar 

  • Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kück U, Bennoun P, Rochaix JD (1988) Cell 52:903–913

    Google Scholar 

  • Conklin PL, Wilson RK, Hanson MR (1991) Genes Dev 5:1407–1415

    Google Scholar 

  • Cummings DJ, Michel F, Domenico JM, McNally KL (1990) J Mol Biol 212:269–286

    Google Scholar 

  • Ecke W, Schmitz U, Michaelis G (1990) Curr Genet 18:133–139

    Google Scholar 

  • Falconet D, Sévignac M, Quétier F (1988) Curr Genet 13:75–82

    Google Scholar 

  • Fox TD, Leaver CJ (1981) Cell 26:315–323

    Google Scholar 

  • Fukuzawa H, Kohchi T, Shirai H, Ohyama K, Umesono K, Inokuchi H, Ozeki H (1986) FEBS Lett 198:11–15

    Google Scholar 

  • Gray MW (1989) Annu Rev Cell Biol 5:25–50

    Google Scholar 

  • Hildebrand M, Hallick RB, Passavant CW, Bourque DP (1988) Proc Natl Acad Sci USA 85:372–376

    Google Scholar 

  • Kao TH, Moon E, Wu R (1984) Nucleic acids Res 12:7305–7315

    Google Scholar 

  • Knoop V, Schuster W, Wissinger B, Brennicke A (1991) EMBO J 10:3483–3493

    Google Scholar 

  • Kohchi T, Umesono K, Ogura Y, Komine Y, Nakahigashi K, Komano T, Yamada Y, Ozeki H, Ohyama K (1988) Nucleic Acids Res 16:10025–10036

    Google Scholar 

  • Koller B, Fromm H, Galund E, Edelman M (1987) Cell 48:111–119

    Google Scholar 

  • Kück U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) EMBO J 6:2185–2195

    Google Scholar 

  • Levings CS III, Brown GG (1989) Cell 56:171–179

    Google Scholar 

  • Manna E, Brennicke A (1985) Curr Genet 9:505–515

    Google Scholar 

  • Nelson MA, Macino G (1987) Mol Gen Genet 206:307–317

    Google Scholar 

  • Palmer JD (1988) Genetics 118:341–351

    Google Scholar 

  • Palmer JD (1990) Trends Genet 6:115–120

    Google Scholar 

  • Palmer JD, Herbon LA (1986) Nucleic Acids Res 14:9755–9765

    Google Scholar 

  • Palmer JD, Herbon LA (1987) Curr Genet 11:565–570

    Google Scholar 

  • Palmer JD, Herbon LA (1988) J Mol Evol 28:87–97

    Google Scholar 

  • Palmer JD, Shields CR (1984) Nature 307:437–440

    Google Scholar 

  • Pereira de Souza AP, Jubier M-F, Delcher E, Lancelin D, Lejeune B (1991) Plant Cell 3:1363–1378

    Google Scholar 

  • Pruitt KD, Hanson MR (1989) Curr Genet 16:281–291

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Senda M, Harada T, Mikami T, Sugiura M, Kinoshita T (1991) Curr Genet 19:175–181

    Google Scholar 

  • Stern DB, Newton KJ (1984) Plant Mol Biol Rep 2:8–15

    Google Scholar 

  • Vedel F, Quétier F (1978) Physiol Vég 16:411–425

    Google Scholar 

  • Wahleithner JA, MacFarlane JL, Wolstenholme DR (1990) Proc Natl Acad Sci USA 87:548–552

    Google Scholar 

  • Wissinger B, Hiesel R, Schuster W, Brennicke A (1988) Mol Gen Genet 212:56–65

    Google Scholar 

  • Wissinger B, Schuster W, Brennicke A (1991) Cell 65:473–482

    Google Scholar 

  • Zaita N, Torozawa K, Shinozaki K, Sugiura M (1987) FEBS Lett 210:153–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.-D. Rochaix

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, A.P., Jubier, MF. & Lejeune, B. The higher plant nad5 mitochondrial gene: a conserved discontinuous transcription pattern. Curr Genet 22, 75–82 (1992). https://doi.org/10.1007/BF00351745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351745

Key words

Navigation