Skip to main content
Log in

Comparative analysis of a recombining-repeat-sequence family in the mitochondrial genomes of wheat (Triticum aestivum L.) and rye (Secale cereale L.)

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The mitochondrial genomes of wheat and rye each contain a three-member family of recombining repeat peat sequences (the “18S/5S repeat”) that encode genes for 18S and 5S rRNAs (rrn18 and rrn5) and tRNAfMet (trnfM). Here we present, for wheat and rye, the sequence and boundaries of the “common sequence unit” (CSU) that is shared between all three repeat copies in each species. The wheat CSU is 4,429 base-pairs long and contains (in addition to trnfM, rrn18 and rrn5) a putative promoter, three tRNA-like elements (“t-elements”), and part of a pseudogene (“ψatpA c”) that is homologous to chloroplast atpA, which encodes the α subunit of chloroplast F1 ATPase. The rye CSU is somewhat smaller (2,855 base pairs) but contains much the same genic and other sequence elements as its wheat counterpart, except that two of the three t-elements as well as ψatpA c are found in only one of the three downstream flanks of the 18S/5S repeat, outside the CSU boundaries. In interpreting the seuuence data in terms of the evolutionary history of the 18S/5S-repeat family of wheat and rye, we conclude that (1) the wheat-rye form of the 18S/5S repeat most likely originated between 3 and 14 million years ago, in a lineage that gave rise to wheat and rye but not to barley, oasts, rice or maize; (2) the close linkage (1-bp apart) between trnfM and rrn18 is similarly limited in its taxonomic distribution to the wheat/rye lineage; (3) the trnfM-rrn18 pair arose via a single mutation that inserted a sequence block containing trnfM immediately upstream of rrn18; and (4) the presence of a putative promoter upstream of rrn18 in all wheat and rye repeats is consistent with all three repeat copies being transcriptionally active. We discuss these conclusions in the light of the possible functional significance of recombining-repeats in plant mitochondrial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André C, Levy A, Walbot V (1992) Trends Genet 8:128–132

    Google Scholar 

  • Augustyniak, H (1991) EMBL Sequence Database, Accession Number Z11512

  • Bendich AJ (1985) In: Hohn B, Dennis ES (eds) Genetic flux in plants. Springer, Wien, pp 111–138

    Google Scholar 

  • Bendich AJ (1987) BioEssays 6:279–282

    Google Scholar 

  • Bendich AJ, Smith SB (1990) Curr Genet 17:421–425

    Google Scholar 

  • Borsuk P, Sirko A, Bartnik E (1986) Nucleic Acids Res 14:7508

    Google Scholar 

  • Chao S, Sederoff RR, Levings CS III (1983) Plant Physiol 71:190–193

    Google Scholar 

  • Coulthart MB, Huh GS, Gray MW (1990) Curr Genet 17:339–346

    Google Scholar 

  • Dale RMK, McClure BA, Houchins JP (1985) Plasmid 13:31–40

    Google Scholar 

  • Falconet D, Lejeune B, Quetier F, Gray MW (1984) EMBO J 3:297–302

    Google Scholar 

  • Falconet D, Delorme S, Lejeune B, Sévignac M, Delcher E, Bazetoux S, Quétier F (1985) Curr Genet 9:169–174

    Google Scholar 

  • Folkerts O, Hanson MR (1989) Nucleic Acids Res 17:7345–7357

    Google Scholar 

  • Gottschalk M, Brennicke A (1985) Curr Genet 9:165–168

    Google Scholar 

  • Grabau EA (1985) Plant Mol Biol 5:119–124

    Google Scholar 

  • Gray MW, Spencer DF (1983) FEBS Lett 161:323–327

    Google Scholar 

  • Gray MW, Hanic-Joyce PJ, Covello PS (1992) Annu Rev Plant Physiol Plant Mol Biol 43:145–175

    Google Scholar 

  • Hanic-Joyce PJ, Spencer DF, Gray MW (1990) Plant Mol Biol 15:551–559

    Google Scholar 

  • Henikoff S (1984) Gene 28:351–359

    Google Scholar 

  • Howe CJ, Fearnley IM, Walker JE, Dyer TA, Gray JC (1985) Plant Mol Biol 4:333–345

    Google Scholar 

  • Joyce PBM, Spencer DF, Gray MW (1988) Plant Mol Biol 11:833–843

    Google Scholar 

  • Jubier M-F, Lucas H, Delcher E, Hartmann C, Quétier F, Lejeune B (1990) Curr Genet 17:523–528

    Google Scholar 

  • Lejeune B, Delorme S, Delcher E, Quétier F (1987) Plant Physiol Biochem 25:227–233

    Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron C M-R (1984) Nucleic Acids Res 12:9249–9261

    Google Scholar 

  • Makaroff CA, Palmer JD (1989) J Biol Chem 264:11706–11713

    Google Scholar 

  • Maloney AP, Walbot V (1990) J Mol Biol 213:633–649

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • Palmer DJ (1985) In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York London, pp 131–240

    Google Scholar 

  • Palmer JD (1990) Trends Genet 6:115–120

    Google Scholar 

  • Palmer JD (1991) In: Bogorad L, Vasil IK (eds) The molecular biology of plastids (vol 7A in Cell culture and somatic cell genetics of plants). Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Palmer JD, Herbon LA (1987) Curr Genet 11:565–570

    Google Scholar 

  • Palmer JD, Herbon LA (1988) J Mol Evol 28:87–97

    Google Scholar 

  • Palmer JD, Shields CR (1984) Nature 307:437–440

    Google Scholar 

  • Quetier F, Lejeune B, Delorme S, Falconet D, Jubier MF (1985) In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 413–420

    Google Scholar 

  • Rodermel SR, Bogorad L (1987) Genetics 116:127–139

    Google Scholar 

  • Runeberg-Roos P, Grienenberger JM, Guillemaut P, Marechal L, Gruber V, Weil JH (1987) Plant Mol Biol 9:237–246

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Siculella L, Palmer JD (1988) Nucleic Acids res 16:3787–3799

    Google Scholar 

  • Spencer DF, Bonen L, Gray MW (1981) Biochemistry 20:4022–4029

    Google Scholar 

  • Spencer DF, Schnare MN, Gray MW (1984) Proc Natl Acad Sci USA 81:493–497

    Google Scholar 

  • Spencer DF, Schnare MN, Coulthart MB, Gray MW (1992) Plant Mol Biol (in press)

  • Stern DB, Lonsdale DM (1982) Nature 299:698–702

    Google Scholar 

  • Stern DB, Palmer JD (1984a) Proc Natl Acad Sci USA 81:1946–1950

    Google Scholar 

  • Stern DB, Palmer JD (1984b) Nucleic Acids Res 12:6141–6157

    Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Proc Natl Acad Sci USA 84:9054–9058

    Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989a) Proc Natl Acad Sci USA 86:6201–6205

    Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989b) J Mol Evol 29:208–211

    Google Scholar 

  • Yamato K, Ogura Y, Kanegae T, Yamada Y, Ohyama K (1992) Theor Appl Genet 83:279–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. W. Birky, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulthart, M.B., Spencer, D.F. & Gray, M.W. Comparative analysis of a recombining-repeat-sequence family in the mitochondrial genomes of wheat (Triticum aestivum L.) and rye (Secale cereale L.). Curr Genet 23, 255–264 (1993). https://doi.org/10.1007/BF00351504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351504

Key words

Navigation