Skip to main content
Log in

Oxidation of aluminium nitride substrates

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growth of oxide films on two types of aluminium nitride substrates of different origin has been studied as a function of temperature. At a given set of oxidation reaction parameters, the oxide layers grown on substrates with a relatively large grain size and high concentrations of Y-Al-O-based liquid sintering aid phases (type I substrates) were observed to be thicker and more diffuse than those obtained on substrates with an average particle size of approximately 3 μm and low liquid sintering aid concentrations (type II substrates). The effects of the oxygen partial pressure variation on the oxide film growth have been investigated for the oxidation of type II AIN substrates. The kinetics of the growth of oxide films on such substrates were analysed and determined to fit best to a linear rate law. This type of rate law indicates that the rate-limiting step in the growth of oxide films on high-quality type II aluminium nitride substrates is an interface reaction-controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Slack, R. A. Tanzill, R. O. Pohl and J. W. Vandersande, J. Phys. Chem. Solids 48 (1987) 641.

    Article  CAS  Google Scholar 

  2. G. A. Slack, ibid. 34 (1973) 321.

    Article  CAS  Google Scholar 

  3. R. W. Rice, J. H. Enloe, J. W. Lau, E. Y. Luh and L. E. Dolhert, Ceram. Bull. 71 (1992) 751.

    CAS  Google Scholar 

  4. N. Iwase, K. Anzai and K. Shinozaki, Solid State Technol. 29(10) (1986) 135.

    CAS  Google Scholar 

  5. L. M. Sheppard, Ceram. Bull. 69 (1990) 1801.

    Google Scholar 

  6. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, IEEE Trans. Components, Hybrids, Manuf. Technol. 13 (1990) 313.

    Article  CAS  Google Scholar 

  7. A. V. Virkar, T. B. Jackson and R. A. Cutler, J. Am. Ceram. Soc. 72 (1989) 2031.

    Article  CAS  Google Scholar 

  8. J. H. Harris, R. A. Youngman and R. G. Teller, J. Mater. Res. 5 (1990) 1763.

    Article  CAS  Google Scholar 

  9. M. Billy, J. Jarrige, J. P. Lecompte, J. Mexmain and S. Yefsah, Rev. Chim. Miner. 19 (1982) 673 (in French).

    CAS  Google Scholar 

  10. V. A. Lavrenko and A. F. Alexeev, Ceram. Int. 9 (3) (1983) 80.

    Article  CAS  Google Scholar 

  11. A. D. Katnani and K. I. Papathomas, J. Vac. Sci. Technol. A5 (1987) 1335.

    Article  Google Scholar 

  12. D. Suryanarayana, L. J. Matienzo, and D. F. Spencer, IEEE Trans. Components, Hybrids, Manuf. Technol. 12 (1989) 566.

    Article  CAS  Google Scholar 

  13. D. Suryanarayana, J. Am. Ceram. Soc. 73 (1990) 1108.

    Article  CAS  Google Scholar 

  14. G. Tammann, Z. Anorg. Allg. Chem. 111 (1920) 78 (in German).

    Article  Google Scholar 

  15. N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29 (1923) 529.

    Google Scholar 

  16. H. Schmalzried, “Solid State Reactions,” 2nd Ed. (Verlag Chemie GmbH, Weinheim, 1981) pp. 171–8.

    Google Scholar 

  17. “Aluminium Nitride — The Choice for Thermal Management Applications”, Brochure A-14065A (The Carborundum Company, Electronics Materials Group, Substrates Division. Sanborn, NY, USA, 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D., Dieckmann, R. Oxidation of aluminium nitride substrates. JOURNAL OF MATERIALS SCIENCE 29, 1949–1957 (1994). https://doi.org/10.1007/BF00351319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351319

Keywords

Navigation