Skip to main content
Log in

The role of vitronectin as multifunctional regulator in the hemostatic and immune systems

  • Leading Article
  • Published:
Blut Aims and scope Submit manuscript

Summary

Vitronectin (= complement S-protein) belongs to the group of structurally and functionally homologous adhesive proteins (fibrinogen, fibronectin, von Willebrand factor) which are essential in the procoagulant phase of the hemostatic system, interacting with platelets and the vessel wall. In addition to a structural motif in vitronectin responsible for this interaction (cell attachment domain) other functional domains in the protein molecule exist that contribute to its multifunctional role as regulator in the immune system (complement) as well as in fibrinolysis. These various activities and the ubiquitous distribution of vitronectin in the organism are discussed with regard to structurefunction relationships of the protein molecule. Vitronectin may thus provide a conceptual molecular link between cell adhesion, humoral immune response and the hemostatic system, particularly at the blood-vessel wall interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker JB, Gronke RS (1986) Protease nexins and cellular regulation. Semin Thromb Hemost 12: 216–220

    Google Scholar 

  2. Baker PJ, Lint TF, McLeod B, Behrends CL, Gewurz H (1975) Studies on the inhibition of C56-induced lysis (reactive lysis). VI. Modulation of C56-induced lysis by polyanions and polycations. J Immunol 114: 554–558

    Google Scholar 

  3. Bariety, J, Hinglais N, Bhakdi S, Mandet C, Rouchon M, Kazatchkine MD (1989) Immunohistochemical study of complement S protein (vitronectin) in normal and diseased human kidneys: relationship to neoantigens of the C5b-9 terminal complex. Clin Exp Immunol 75: 76–81

    Google Scholar 

  4. Barnes DW, Reing JE, Amos B (1985) Heparin-binding properties of human serum spreading factor. J Biol Chem 260: 9117–9122

    Google Scholar 

  5. Barnes DW, Silnutzer J (1983) Isolation of human serum spreading factor. J Biol Chem 258: 12548–12552

    Google Scholar 

  6. Barnes DW, Silnutzer J, See C, Shaffer M (1983) Characterization of human serum spreading factor with monoclonal antibody. Proc Natl Acad Sci USA 80: 1362–1366

    Google Scholar 

  7. Barnes D, Wolfe R, Serrero G, McClure D, Sato G (1980) Effects of a serum spreading factor on growth and morphology of cells in serum-free medium. J Supramol Struct 14: 47–63

    Google Scholar 

  8. Bauer PI, Mandl J, Machovich R, Antoni F, Garzo T, Horvath I (1982) Specific binding of thrombin-antithrombin III complex to hepatocytes. Thromb Res 28: 595–606

    Google Scholar 

  9. Bhakdi S, Bhakdi-Lehnen B, Tranum-Jensen J (1979) Proteolytic transformation of SC5b-9 into an amphiphilic macromulecule resembling the C5b-9 membrane attack complex of complement. Immunology 37: 901–912

    Google Scholar 

  10. Bhakdi S, Käflein R, Halstensen TS, Hugo F, Preissner KT, Mollnes TE (1988) Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes. Clin Exp Immunol 74: 459–464

    Google Scholar 

  11. Bhakdi S, Tranum-Jensen J (1982) Hydrophilic-amphiphilic transition of the terminal SC5b-8 complement complex through tryptic modification: biochemical and ultrastructural studies. Mol Immunol 19: 1167–1177

    Google Scholar 

  12. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann Rev Cell Biol 4: 487–525

    Google Scholar 

  13. Chen LB, Buchanan JM (1975) Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci USA 72: 131–135

    Google Scholar 

  14. Chhatwal GS, Preissner KT, Müller-Berghaus G, Blobel H (1987) Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun 55: 1878–1883

    Google Scholar 

  15. Coller BS (1987) Diagnostic and therapeutic applications of antiplatelet monoclonal antibodies. Biorheology 24: 649–658

    Google Scholar 

  16. Collins WE, Mosher DF, Tomasini BR, Cooper SL (1987) A preliminary comparison of the thrombogenic activity of vitronectin and other RGD-containing proteins when bound to surfaces. Ann NY Acad Sci 516: 291–299

    Google Scholar 

  17. Conlan MG, Tomasini BR, Schultz RL, Mosher DF (1988) Plasma vitronectin polymorphism in normal subjects and patients with disseminated intravascular coagulation. Blood 72: 185–190

    Google Scholar 

  18. Dahlbäck B, Podack ER (1985) Characterization of human S protein, an inhibitor of the membrane attack complex of complement. Demonstration of a free reactive thiol group. Biochemistry 24: 2368–2374

    Google Scholar 

  19. Dahlbäck K, Lofberg H, Dahlbäck B (1986) Localization of vitronectin (S-protein of complement) in normal human skin. Acta Derm Venereol 66: 461–467

    Google Scholar 

  20. Dahlbäck K, Lofberg H, Dahlbäck B (1987) Immunohistochemical demonstration of vitronectin in association with elastin and amyloid deposits in human kidney. Histochemistry 87: 511–515

    Google Scholar 

  21. Declerck PJ, De Mol M, Alessi M-C, Baudner S, Paques E-P, Preissner KT, Müller-Berghaus G, Collen D (1988) Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. J Biol Chem 263: 15454–15461

    Google Scholar 

  22. Delvos U, Meusel P, Preissner KT, Müller-Berghaus G (1987) Formation of activated protein C and inactivation of cell-bound thrombin by antithrombin III at the surface of cultured vascular endothelial cells — A comparative study of two anticoagulant mechanisms. Thromb Haemost 57: 87–91

    Google Scholar 

  23. Fair DS, Plow EF (1986) Specific association of thrombin-antithrombin complexes with a human hepatoma cell line. Thromb Res 41: 67–78

    Google Scholar 

  24. Falk RJ, Podack E, Dalmasso AP, Jennette JC (1987) Localization of S protein and its relationship to the membrane attack complex of complement in renal tissue. Am J Pathol 127: 182–190

    Google Scholar 

  25. Fryklund L, Sievertsson H (1978) Primary structure of somatomedin B — A growth hormone-dependent serum factor with protease inhibiting activity. FEBS Lett 87: 55–60

    Google Scholar 

  26. Fuchs HE, Shifman MA, Pizzo SV (1982) In vivo catabolism of alpha-1-proteinase inhibitor-trypsin, antithrombin III-thrombin and alpha-2-macroglobulin-methylamine. Biochim Biophys Acta 716: 151–157

    Google Scholar 

  27. Gebb C, Hayman EG, Engvall E, Ruoslahti E (1986) Interaction of vitronectin with collagen. J Biol Chem 261: 16698–16703

    Google Scholar 

  28. Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol 106: 925–930

    Google Scholar 

  29. Ginsberg MH, Loftus JC, Plow EF (1988) Cytoadhesins, integrins, and platelets. Thromb Haemost 59: 1–6

    Google Scholar 

  30. Grinnell F, Hays DG (1978) Cell adhesion and spreading factor — Similarity to cold insoluble globulin in human serum. Exp Cell Res 115: 221–229

    Google Scholar 

  31. Guettier C, Hinglais N, Bruneval P, Kazatchkine M, Bariety J, Camilleri J-P (1989) Immunohistochemical localization of S-protein/vitronectin in human atherosclerotic versus arteriosclerotic arteries. Virchows Arch (Pathol Anat) 414: 309–313

    Google Scholar 

  32. Hänsch GM, Schönermark S, Roelcke D (1987) Paroxysmal nocturnal hemoglobinuria type III. Lack of an erythrocyte membrane protein restricting the lysis by C5b-9. J Clin Invest 80: 7–12

    Google Scholar 

  33. Hanson SR, Pareti FI, Ruggeri ZM, Marzec UM, Kunicki TJ, Montgomery RR, Zimmerman TS, Harker LA (1988) Effects of monoclonal antibodies against the platelet glycoprotein IIb/IIIa complex on thrombosis and hemostasis in the baboon. J Clin Invest 81: 149–158

    Google Scholar 

  34. Hayashi M, Akama T, Kono I, Kashiwagi H (1985) Activation of vitronectin (serum spreading factor) — binding of heparin by denaturing agents. J Biochem 98: 1135–1138

    Google Scholar 

  35. Hayman EG, Engvall E, A'Hearn E, Barnes D, Pierschbacher M, Ruoslahti E (1982) Cell attachment of replicas of SDS polyacrylamide gels reveals two adhesive plasma proteins. J Cell Biol 95: 20–23

    Google Scholar 

  36. Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E (1983) Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci USA 80: 4003–4007

    Google Scholar 

  37. Hekman CM, Loskutoff DJ (1985) Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 260: 11581–11587

    Google Scholar 

  38. Heldin C-H, Wasteson A, Fryklund L, Westermark B (1981) Somatomedin B: Mitogenic activity derived from contaminant epidermal growth factor. Science 213: 1122–1123

    Google Scholar 

  39. Hetland G, Pettersen HB, Mollnes TE, Johnson E (1989) S-protein is synthesized by human monocytes and macrophages in vitro. Scand J Immunol 29: 15–21

    Google Scholar 

  40. Hildebrand A (1989) Identification of the beta-endorphin-binding subunit of the SC5b-9 complement complex: S-protein exhibits specific beta-endorphin-binding sites upon complex formation with complement proteins. Biochem Biophys Res Commun 159: 799–806

    Google Scholar 

  41. Hildebrand A, Preissner KT, Müller-Berghaus G, Teschemacher H (1989) A novel β-endorphin binding protein — Complement S protein (= vitronectin) exhibits specific non-opioid binding sites for β-endorphin upon interaction with heparin or surfaces. J Biol Chem 264: 15429–15434

    Google Scholar 

  42. Holmes R (1967) Preparation from human serum of an alpha-one protein which induces the immediate growth of unadapted cells in vitro. J Cell Biol 32: 297–308

    Google Scholar 

  43. Humphries MJ, Olden K, Yamada KM (1986) A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233: 467–470

    Google Scholar 

  44. Hynes RO (1987) Integrins: A family of cell surface receptors. Cell 48: 549–554

    Google Scholar 

  45. Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95: 369–377

    Google Scholar 

  46. Ill CR, Ruoslahti E (1985) Association of thrombin-anti-thrombin III complex with vitronectin in serum. J Biol Chem 260: 15610–15615

    Google Scholar 

  47. Izumi M, Shimo-Oka T, Morishita N, Ii I, Hayashi M (1988) Identification of the collagen-binding domain of vitronectin using monoclonal antibodies. Cell Struct Funct 13: 217–225

    Google Scholar 

  48. Izumi M, Yamada KM, Hayashi M (1989) Vitronectin exists in two structurally and functionally distinct forms in human plasma. Biochim Biophys Acta 990: 101–108

    Google Scholar 

  49. Jaffe EA, Hoyer LW, Nachman RL (1974) Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci USA 71: 1906–1909

    Google Scholar 

  50. Jaffe EA, Mosher DF (1978) Synthesis of fibronectin by cultured human endothelial cells. J Exp Med 147: 1779–1791

    Google Scholar 

  51. Jenne D, Hugo F, Bhakdi S (1985) Interaction of complement S-protein with thrombin-antithrombin complexes: A role for the S-protein in haemostasis. Thromb Res 38: 401–412

    Google Scholar 

  52. Jenne D, Hugo F, Bhakdi S (1985) Monoclonal antibodies to human plasma protein X alias complement S-protein. Biosci Rep 5: 343–352

    Google Scholar 

  53. Jenne D, Stanley KK (1985) Molecular cloning of S-protein, a link between complement, coagulation and cell-substrate adhesion. EMBO J 4: 3153–3157

    Google Scholar 

  54. Jenne D, Stanley KK (1987) Nucleotide sequence and organization of the human S-protein gene: repeating peptide motifs in the “pexin” family and a model for their evolution. Biochemistry 26: 6735–6742

    Google Scholar 

  55. Jordan RE, Favreau LV, Braswell EH, Rosenberg RD (1982) Heparin with two binding sites for antithrombin or platelet factor 4. J Biol Chem 257: 400–406

    Google Scholar 

  56. Kanz L, Löhr GW, Preissner KT (1988) Identification of human megakaryocyte vitronectin/S-protein. Blood 72 [Suppl 1]: 327 a

  57. Kemkes-Matthes B, Preissner KT, Langenscheidt F, Matthes KJ, Müller-Berghaus G (1987) S protein/vitronectin in chronic liver diseases: Correlations with serum cholinesterase, coagulation factor X and complement component C3. Eur J Haematol 39: 161–165

    Google Scholar 

  58. Knox P, Griffiths S (1980) The distribution of cell-spreading activities in sera: A quantitative approach. J Immunol 46: 97–112

    Google Scholar 

  59. Kolb WP, Müller-Eberhard HJ (1975) The membrane attack mechanism of complement. Isolation and subunit composition of the C5b-9 complex. J Exp Med 141: 724–735

    Google Scholar 

  60. Korc-Grodzicki B, Tauber-Finkelstein M, Chain D, Shaltiel S (1988) Vitronectin is phosphorylated by a cAMP-dependent protein kinase released by activation of human platelets with thrombin. Biochem Biophys Res Commun 157: 1131–1138

    Google Scholar 

  61. Kubota K, Katayama S, Matsuda M, Hayashi M (1988) Three types of vitronectin in human blood. Cell Struct Funct 13: 123–128

    Google Scholar 

  62. Lane DA, Flynn AM, Pejler G, Lindahl U, Choay J, Preissner KT (1987) Structural requirements for the neutralization of heparinlike saccharides by complement S protein/vitronectin. J Biol Chem 262: 16343–16349

    Google Scholar 

  63. Levin EG, Santell L (1987) Association of a plasminogen activator inhibitor (PAI-1) with the growth substratum and membrane of human endothelial cells. J Cell Biol 105: 2543–2549

    Google Scholar 

  64. Lijnen HR, Hoylaerts M, Collen D (1983) Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J Biol Chem 258: 3803–3808

    Google Scholar 

  65. Lindahl U, Thunberg L, Bäckström G, Riesenfeld J, Nordling K, Björk I (1984) Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem 259: 12368–12376

    Google Scholar 

  66. Lint TF, Behrends CL, Gewurz H (1977) Serum lipoproteins and C567-INH activity. J Immunol 119: 883–888

    Google Scholar 

  67. Low DA, Baker JB, Koonce WC, Cunningham DD (1981) Released protease-nexin regulates cellular binding, internalization, and degradation of serine proteases. Proc Natl Acad Sci USA 78: 2340–2344

    Google Scholar 

  68. Marchisio PC, Bergui L, Corbascio GC, Cremona O, D'Urso N, Schena M, Tesio L, Caligaris-Cappio F (1988) Vinculin, talin, and integrins are localized at specific adhesion sites of malignant B lymphocytes. Blood 72: 830–833

    Google Scholar 

  69. Marciniak E, Gora-Maslak G (1983) High molecular weight forms of antithrombin III complexes in blood. Thromb Haemost 49: 32–36

    Google Scholar 

  70. Marcum JA, McKenney JB, Rosenberg RD (1984) Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium. J Clin Invest 74: 341–350

    Google Scholar 

  71. Marcum JA, Rosenberg RD (1987) Anticoagulantly active heparan sulfate proteoglycan and the vascular endothelium. Semin Thromb Haemost 13: 464–474

    Google Scholar 

  72. McGuire EA, Peacock ME, Inhorn R, Siegel NR, Tollefsen DM (1988) Phosphorylation of vitronectin by a protein kinase in human plasma. J Biol Chem 263: 1942–1945

    Google Scholar 

  73. McLeod B, Baker P, Gewurz H (1975) Studies on the inhibition of C56-initiated lysis (reactive lysis). III. Characterization of the inhibitory activity C567-INH and its mode of action. Immunology 28: 133–149

    Google Scholar 

  74. Mimuro J, Loskutoff DJ (1989) Purification of a protein from bovine plasma that binds to type-1 plasminogen-activator inhibitor and prevents its interaction with extracellular-matrix — Evidence that the protein is vitronection. J Biol Chem 264: 936–939

    Google Scholar 

  75. Müller-Eberhard HJ (1986) The membrane attack complex of complement. Ann Rev Immunol 4: 503–528

    Google Scholar 

  76. Nemerow GR, Yamamoto K-I, Lint TF (1979) Restriction of complement-mediated membrane damage by the eight component of complement: A dual role for C8 in the complement attack sequence. J Immunol 123: 1245–1252

    Google Scholar 

  77. Niculescu F, Rus HG, Vlaicu R (1987) Immunohistochemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis 65: 1–11

    Google Scholar 

  78. Parker CJ, Frame RN, Elstad MR (1988) Vitronectin (S-protein) augments the functional activity of monocyte receptors for IgG and complement C3b. Blood 71: 86–93

    Google Scholar 

  79. Pepper DS, Banhegyi D, Cash JD (1977) The different forms of antithrombin III in serum. Thrombos Haemost 38: 494–503

    Google Scholar 

  80. Pierschbacher MD, Ruoslahti E (1987) Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem 262: 17294–17298

    Google Scholar 

  81. Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81: 5985–5988

    Google Scholar 

  82. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30–33

    Google Scholar 

  83. Podack ER, Curd JG, Griffin JH, Müller-Eberhard HJ (1979) The thrombin protecting function of a complement inhibitor in human plasma. Thromb Haemost 42: 170

    Google Scholar 

  84. Podack ER, Kolb WP, Müller-Eberhard HJ (1977) The SC5b-7 complex: Formation, isolation, properties, and subunit composition. J Immunol 119: 2024–2029

    Google Scholar 

  85. Podack ER, Müller-Eberhard HJ (1978) Binding of desoxycholate, phosphatidylcholine vesicles, lipoprotein and of the S-protein to complexes of terminal complement components. J Immunol 121: 1025–1030

    Google Scholar 

  86. Podack ER, Müller-Eberhard HJ (1979) Isolation of human S-protein, an inhibitor of the membrane attack complex of complement. J Biol Chem 254: 9908–9914

    Google Scholar 

  87. Podack ER, Müller-Eberhard HJ (1980) SC5b-9 complex of complement: Formation of the dimeric membrane attack complex by removal of S-protein. J Immunol 124: 1779–1783

    Google Scholar 

  88. Podack ER, Preissner KT, Müller-Eberhard HJ (1984) Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand 92 (C) [Suppl 284]: 89–96

    Google Scholar 

  89. Podack ER, Tschopp J (1984) Membrane attack by complement. Mol Immunol 21: 589–603

    Google Scholar 

  90. Preissner KT, Anders E, Grulich-Henn J, Müller-Berghaus G (1988) Attachment of cultured human endothelial cells is promoted by specific association with S protein (vitro-nectin) as well as with the ternary S protein-thrombin-antithrombin III complex. Blood 71: 1581–1589

    Google Scholar 

  91. Preissner KT, Grulich-Henn J, Müller-Berghaus G (1989) The functional role of vitronectin (complement S-protein) as regulatory component of the haemostatic system at the vessel wall. J Cell Biochem 13E [Suppl]: 202

    Google Scholar 

  92. Preissner KT, Heimburger N, Anders E, Müller-Berghaus G (1986) Physicochemical, immunochemical and functional comparison of human S-protein and vitronectin — Evidence for the identity of both plasma proteins. Biochem Biophys Res Commun 134: 951–956

    Google Scholar 

  93. Preissner KT, Holzhüter S, Müller-Berghaus G (1988) Identification and partial characterization of platelet S protein. Haemostasis 18: 149

    Google Scholar 

  94. Preissner KT, Holzhüter S, Justus C, Müller-Berghaus G (1989) Identification and partial characterization of platelet vitronectin. Evidence for complex formation with platelet-derived plasminogen activator inhibitor-1. Blood 74: 1989–1996

    Google Scholar 

  95. Preissner KT, Müller-Berghaus G (1986) S-protein modulates the heparin-catalyzed inhibition of thrombin by anti-thrombin III. Evidence for a direct interaction of S-protein with heparin. Eur J Biochem 156: 645–650

    Google Scholar 

  96. Preissner KT, Müller-Berghaus G (1986) Molekulare Wechselwirkungen zwischen Komplement-, Gerinnungs- und Fibrinolyse-system. Haemostaseol 6: 67–81

    Google Scholar 

  97. Preissner KT, Müller-Berghaus G (1987) Neutralization and binding of heparin by S protein/vitronectin in the inhibition of factor Xa by antithrombin III. Involvement of an inducible heparin binding domain of S protein/vitronectin. J Biol Chem 262: 12247–12253

    Google Scholar 

  98. Preissner KT, Podack ER, Müller-Eberhard HJ (1989) SC5b-7, SC5b-8 and SC5b-9 complexes of complement: Ultrastructure and localization of the S-protein (vitronectin) within the macromolecules. Eur J Immunol 19: 69–75

    Google Scholar 

  99. Preissner KT, Sie P (1988) Modulation of heparin cofactor II function by S protein (vitronectin) and formation of a ternary S protein-thrombin-heparin cofactor II complex. Thromb Haemost 60: 399–406

    Google Scholar 

  100. Preissner KT, Wassmuth R, Müller-Berghaus G (1985) Physicochemical characterization of human S-protein and its function in the blood coagulation system. Biochem J 231: 349–355

    Google Scholar 

  101. Preissner KT, Zwicker L, Müller-Berghaus G (1987) Formation, characterization and detection of a ternary complex between S protein, thrombin and antithrombin III in serum. Biochem J 243: 105–111

    Google Scholar 

  102. Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E (1986) Platelet membrane glycoprotein IIb/IIIa: Members of a family of Arg-Gly-Asp-specific adhesion receptors. Science 231: 1559–1562

    Google Scholar 

  103. Rovelli G, Preissner KT, Monard D (1989) The interaction of Glia-Derived Nexin, thrombin and their complex with vitronectin. (submitted)

  104. Ruoslahti E (1988) Fibronectin and its receptors. Ann Rev Biochem 57: 375–413

    Google Scholar 

  105. Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: A versatile cell recognition signal. Cell 44: 517–518

    Google Scholar 

  106. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238: 491–497

    Google Scholar 

  107. Ruoslahti E, Suzuki S, Hayman EG, Ill CR, Pierschbacher MD (1987) Purification and characterization of vitronectin. Methods Enzymol 144: 430–437

    Google Scholar 

  108. Rus HG, Niculescu F, Vlaicu R (1987) Presence of C5b-9 complement complex and S-protein in human myocardial areas with necrosis and sclerosis. Immunol Lett 16: 15–20

    Google Scholar 

  109. Salama A, Preissner KT, Goettsche B, Müller-Berghaus G, Mueller-Eckhardt C (1988) Complement inhibitor S protein is associated with membranes of red blood cells from patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol 68: 41–45

    Google Scholar 

  110. Salonen E-M, Vaheri A, Pollänen J (1989) Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin. J Biol Chem 264: 6339–6343

    Google Scholar 

  111. Sane DC, Moser TL, Pippen AMM, Parker CJ, Achyuthan KE, Greenberg CS (1988) Vitronectin is a substrate for transglutaminases. Biochem Biophys Res Commun 157: 115–120

    Google Scholar 

  112. Schönermark S, Rauterberg EW, Shin ML, Loke S, Roelcke D, Hänsch GM (1986) Homologous species restriction in lysis of human erythrocytes: a membranederived protein with C8-binding capacity functions as an inhibitor. J Immunol 136: 1772–1776

    Google Scholar 

  113. Shifman MA, Pizzo SV (1982) The in vivo metabolism of antithrombin III and antithrombin III complexes. J Biol Chem 257: 3243–3248

    Google Scholar 

  114. Sommer J, Gloor SM, Rovelli GF, Hofsteenge J, Nick H, Meier R, Monard D (1987) cDNA sequence coding for a rat glia-derived nexin and its homology to members of the serpin superfamily. Biochemistry 26: 6407–6410

    Google Scholar 

  115. Springer TA, Dustin ML, Kishimoto TK, Marlin SD (1987) The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: Cell adhesion receptors of the immune system. Ann Rev Immunol 5: 223–252

    Google Scholar 

  116. Stanley KK (1986) Homology with hemopexin suggests a possible scavenging function of S-protein/vitronectin. FEBS Lett 199: 249–253

    Google Scholar 

  117. Stenn KS (1981) Epibolin: A protein of human plasma that supports epithelial cell movement. Proc Natl Acad Sci USA 78: 6907–6911

    Google Scholar 

  118. Sun WH, Mosher DF (1989) Polymorphism of vitronectin. Blood 73: 353–354

    Google Scholar 

  119. Sundsmo JS, Fair DS (1983) Relationships among the complement, kinin, coagulation, and fibrinolytic systems. Semin Immunopathol 6: 231–258

    Google Scholar 

  120. Suzuki S, Oldberg A, Hayman EG, Pierschbacher MD, Ruoslahti E (1985) Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J 4: 2519–2524

    Google Scholar 

  121. Suzuki S, Pierschbacher MD, Hayman EG, Nguyen K, Öhgren Y, Ruoslahti E (1984) Domain structure of vitronectin. J Biol Chem 259: 15307–15314

    Google Scholar 

  122. Thiagarajan P, Kelly K (1988) Interaction of thrombin-stimulated platelets with vitronectin (S-protein of complement) substrate: Inhibition by a monoclonal antibody to glycoprotein IIb-IIIa complex. Thromb Haemostas 60: 514–517

    Google Scholar 

  123. Thiagarajan P, Kelly KL (1988) Exposure of binding sites for vitronectin on platelets following stimulation. J Biol Chem 263: 3035–3038

    Google Scholar 

  124. Tomasini B, Mosher DF (1988) Conformational states of vitronectin: Preferential expression of an antigenic epitope when vitronectin is covalently and noncovalently complexed with thrombin-antithrombin III or treated with urea. Blood 72: 903–912

    Google Scholar 

  125. Tomasini BR, Mosher DF (1986) On the identity of vitronectin and S-protein: Immunological crossreactivity and functional studies. Blood 68: 737–742

    Google Scholar 

  126. Tomasini BR, Owen MC, Fenton JW, Mosher DF (1989) Conformational lability of vitronectin: induction of an antigenic change by alpha-thrombin — serpin complexes and by proteolytically modified thrombin. Biochemistry 28: 7617–7623

    Google Scholar 

  127. Tschopp J, Masson D, Schäfer S, Peitsch M, Preissner KT (1988) The heparin binding domain of S-protein/vitronectin binds to complement components C7, C8, C9 and perforin from cytolytic T-cells and inhibits their lytic activities. Biochemistry 27: 4103–4109

    Google Scholar 

  128. Tschopp J, Mollnes TE (1986) Antigenic crossreactivity of the subunit of complement component C8 with the cysteine-rich domain shared by complement component C9 and low density lipoprotein receptor. Proc Natl Acad Sci USA 83: 4223–4227

    Google Scholar 

  129. Tschopp TB, Weiss HJ, Baumgartner HR (1974) Decreased adhesion of platelets to subendothelium in von Willebrand's disease. J Lab Clin Med 83: 296–300

    Google Scholar 

  130. Valentin-Weigand P, Grulich-Henn J, Chhatwal GS, Müller-Berghaus G, Blobel H, Preissner KT (1988) Mediation of adherence of streptococci to human endothelial cells by complement S-protein (vitronectin). Infect Immun 56: 2851–2855

    Google Scholar 

  131. Wagner DD, Olmsted JB, Marder VJ (1982) Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 95: 355–360

    Google Scholar 

  132. Wiman B, Almqvist A, Sigurdardottir O, Lindahl T (1988) Plasminogen-activator inhibitor-l (PAI) is bound to vitronectin in plasma. FEBS Lett 242: 125–129

    Google Scholar 

  133. Wiman B, Lindahl T, Almqvist A (1988) Evidence for a discrete binding protein of plasminogen activator inhibitor in plasma. Thromb Haemost 59: 392–395

    Google Scholar 

  134. Zalman LS, Wood LM, Müller-Eberhard HJ (1986) Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci USA 83: 6975–6979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preissner, K.T. The role of vitronectin as multifunctional regulator in the hemostatic and immune systems. Blut 59, 419–431 (1989). https://doi.org/10.1007/BF00349063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349063

Key words

Navigation