Skip to main content
Log in

Solubility characteristics of synthetic silicate sulphate apatites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isomorphic substitution of (Si, S) for phosphorus in apatite (Ca5(PO)3F) was investigated in the solid solution series from P-apatite to (Si, S)-apatite utilizing compositions of Ca5(PO4)3−x (SiO4) x/2(SO4)x/2F with x=0, 0.75, 1.5, 2, 2.25, 3. Study of the solubility characteristics of these apatites showed an increased weight loss in water with progression from the P-apatite end member to the (Si, S)-apatite end member. Experimentally determined pK sp decreased from 60.62 for the fluorapatite (Ca5(PO4)3F) to 31.65 for fluorellestadite (Ca5(SiO4)1.5(SO4)1.5F). The free energy of formation calculated from the solubility product became less negative from −6755 kJ mol −1 for fluorapatite to −5760 kJ mol −1 for fluorellestadite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. McConnell, Amer. Mineral. 22 (1937) 977.

    Google Scholar 

  2. M. Bredig, Z. Anorg. Allgem. Chem, 230 (1936) 750.

    Google Scholar 

  3. Z. Vasileva, Geochem. 118 (1958) 464.

    Google Scholar 

  4. K. Harada, K. Nagashima and A. Kato, Amer. Mineral. 56 (1971) 1507.

    Google Scholar 

  5. R. Rouse and P. Dunn, 67 (1982) 90.

    Google Scholar 

  6. R. Klement, Naturwiss. 27 (1939) 57.

    Google Scholar 

  7. R. Klement and P. Dihn, Ber. Bunsenges Phys. Chem. 48 (1942) 334.

    Google Scholar 

  8. E. Kreidler, PhD thesis, Marquette University, Milwaukee, WI (1974).

    Google Scholar 

  9. H. McDowell, T. Gregory and W. Brown, J. Res. Nat. Bur. Stand. 81A (1977) 273.

    Google Scholar 

  10. L. Bell, H. Mika and B. Kruger, Arch. Oral Biol. 23 (1978) 329.

    Google Scholar 

  11. A. Hagen, J. Dent. Res. 54 (1975) 384.

    Google Scholar 

  12. T. Gregory, E. Moreno and W. Brown, J. Res. Nat. Bur. Stand. 74A (1970) 461.

    Google Scholar 

  13. J. S. Clark, Can. J. Chem. 33 (1955) 1969.

    Google Scholar 

  14. D. R. Wier, Chien, S. H. and Black, C. A., Soil Sci., 111 (1971) 107.

    Google Scholar 

  15. F. Driessens, Ber. Bunsenges Phys. Chem. 82 (1978) 312.

    Google Scholar 

  16. R. Verbeek, H. Stegaer, H. P. Thun and F. Verbeek, J. Chem. Soc. Land. 76 (1980) 209.

    Google Scholar 

  17. A. Mikhailov, Russ. J. Phys. Chem. 41 (1967) 461.

    Google Scholar 

  18. E. Duff, J. Inorg. Nucl. Chem. 34 (1972) 101.

    Google Scholar 

  19. W. F. Hillebrand, in “Applied Inorganic Analysis” (John Wiley, New York, 1953) pp. 671–883.

    Google Scholar 

  20. A. I. Vogel, “Quantitative Inorganic Analysis” (Longmans Green, London, 1962) p. 810.

    Google Scholar 

  21. H. Kaufman and I. Kleinberg, Calcif. Tissue. Int. 27 (1979) 143.

    Google Scholar 

  22. A. Berndt and R. Stearns, J. Chem. Ed. 50 (1973) 415.

    Google Scholar 

  23. G. Ewing, “Instrumental Methods of Chemical Analysis”, 2nd Edn (McGraw Hill, New York, 1960) pp. 15–74.

    Google Scholar 

  24. G. Levinskas and N. Neuman, J. Phys. Chem. 59 (1955) 164.

    Google Scholar 

  25. S. Greenberg and T. Chang, J. Phys. Chem. 69 (1965) 182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leshkivich, K.S., Monroe, E.A. Solubility characteristics of synthetic silicate sulphate apatites. JOURNAL OF MATERIALS SCIENCE 28, 9–14 (1993). https://doi.org/10.1007/BF00349026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349026

Keywords

Navigation