Skip to main content
Log in

Molecular biology of breast carcinoma

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

During the last several years basic research has resulted in the identification of many of the factors involved in signal transduction pathways, leading us to a greater understanding of the mechanisms of growth control in breast cancer cells. Many of these factors are the products of proto-oncogenes or suppressor genes. This review describes the role of some of these factors in breast cancer development, progression, and metastasis and discusses implications for future directions.

Résumé

Pendant ces dernières années, la recherche fondamentale a permis d'identifier les chemins qu'empruntent les signaux de transduction aidant ainsi à comprendre les mécanismes de contrôle de la croissance des cellules cancéreuses du sein. Beaucoup de ces facteurs sont des produits de proto-oncogènes on des gènes represseurs. Cette revue décrit le rôle de certains de ces facteurs dans le développement du cancer du sein, dans leur évolution et leur diffusion métastatique. Les implications de l'avenir sont discutées.

Resumen

En los últimos años la investigación básica ha permitido identificar muchos de los factores involucrados en las vías celulares y moleculares de transducción de señales, lo cual nos da una mejor comprensión de los mecanismos de control del crecimiento de las células del cáncer mamario. Muchos de los factores promotores son los productos de proto-oncogenes y de genes supresores. La presente revisión describe el papel de algunos de estos factores en el desarrollo del cáncer mamario, de su progresión y de la aparición de metástasis, y discute las implicaciones para futuras directrices de manejo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al.: Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319:525, 1988

    Google Scholar 

  2. Fearon, E.R., Cho, K.R., Nigro, J.M., et al.: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 247:49, 1990

    Google Scholar 

  3. Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61:759, 1990

    Google Scholar 

  4. Ullrich, A., Schlessinger, J.: Signal transduction by receptors with tyrosine kinase activity. Cell 61:203, 1990

    Google Scholar 

  5. Ullrich, A., Coussens, L., Hayflick, J.S.: Human epidermal growth factor receptor cDNA and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418, 1984

    Google Scholar 

  6. Fitzpatrick, S.L., Brightwell, J., Wittliff, J.L., Barrows, G.H., Schultz, G.S.: Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen receptor and progestin receptor levels. Cancer Res. 44:3448, 1984

    Google Scholar 

  7. Sainsbury, J.R.C., Farndon, J.R., Sherbert, G.V., Harris, A.L.: Epidermal growth factor receptors and oestrogen receptors in human breast cancer. Lancet 1:364, 1985

    Google Scholar 

  8. Davidson, N.E., Gelmann, E.P., Lippman, M.E., Dickson, R.B.: Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol. Endocrinol. 1:216, 1987

    Google Scholar 

  9. Velu, T.J., Beguinot, L., Vass, W.C., et al.: Epidermal growth factor-dependent transformation by a human EGF receptor protooncogene. Science 238:1408, 1987

    Google Scholar 

  10. DiFiore, P., Pierce, J., Fleming, T., et al.: Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063, 1987

    Google Scholar 

  11. Chrysogelos, S.A.: Regulation of the EGFR gene in breast cancer cell lines: chromatin structure analysis reveals the involvement of intron I sequences. J. Cell Biol. 17A:69, 1993

    Google Scholar 

  12. Ping, L., Wood, K., Harvey, M., Haser, W., Roberts, T.: raf-1: a kinase currently without a cause but not lacking in effects. Cell 64:479, 1992

    Google Scholar 

  13. Thomas, G.: Map kinase by any other name smells just as sweet. Cell 68:3, 1992

    Google Scholar 

  14. Crews, C.M., Alessandrini, A., Erikson, R.L.: ERKS: their fifteen minutes has arrived. Cell Growth Differ 3:135, 1992

    Google Scholar 

  15. Derynck, R.: Transforming growth factor alpha. Cell 54:593, 1988

    Google Scholar 

  16. Shoyab, M., McDonald, V.L., Bradley, J.G., Todaro, G.J.: Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc. Natl. Acad. Sci. U.S.A. 85:6528, 1988

    Google Scholar 

  17. Dickson, R.B., McManaway, M.E., Lippman, M.E.: Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232:1540, 1986

    Google Scholar 

  18. Murphy, L., Murphy, L.J., Dubik, D., Bell, G., Shiu, R.: Epidermal growth factor gene expression in human breast cancer cells: regulation of expression by progestins. Cancer Res. 48:4555, 1988

    Google Scholar 

  19. Bates, S.E., Davidson, N.E., Valverius, E.M., et al.: Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol. Endocrinol. 2:543, 1988

    Google Scholar 

  20. Higashiyama, S., Abraham, J.A., Klagsburn, M.: Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J. Cell Biol. 122:933, 1993

    Google Scholar 

  21. Plowman, G.D., Green, J.M., McDonald, V.L., et al.: The amphiregulin gene encodes a novel epidermal growth factorrelated protein with tumor-inhibitory activity. Mol. Cell. Biol. 10:1969, 1990

    Google Scholar 

  22. Shih, C., Padhy, L.C., Murray, M., Weinberg, R.A.: Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290:261, 1981

    Google Scholar 

  23. Bargmann, C.I., Hung, M-C., Weinberg, R.A.: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain. Cell 45:649, 1986

    Google Scholar 

  24. Gusterson, B.A., Gelber, R.D., Goldhirsch, A. et al.: Prognostic importance of c-erbB-2 expression in breast cancer: International (Ludwig) Breast Cancer Study Group. J. Clin. Oncol. 10:1049, 1992

    Google Scholar 

  25. Slamon, D.J., Godolphin, W., Jones, L.A., et al.: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707, 1989

    Google Scholar 

  26. Perren, T.J.: c-erbB-2 oncogene as a prognostic marker in breast cancer [editorial]. Br. J. Cancer. 63:328, 1991

    Google Scholar 

  27. Gullick, W.J., Love, S.B., Wright, C., et al.: c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br. J. Cancer. 63:434, 1991

    Google Scholar 

  28. Holmes, W.E., Sliwkowski, M.X., Akita, R.W., et al.: Identification of heregulin, a specific activator of p185erbb2. Science 256:1205, 1992

    Google Scholar 

  29. Lupu, R., Colomer, R., Zugmaier, G., et al.: Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science 249:1552, 1990

    Google Scholar 

  30. Wen, D., Peles, E., Cupples, R., et al.: Neu differentiation factor: a transmembrane glycoprotein containing an egf domain and an immunoglobulin homology unit. Cell 69:559, 1992

    Google Scholar 

  31. Falls, D.L., Rosen, K.M., Corfas, G., Lane, W.S., Fischbach, G.D.: ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72:801, 1993

    Google Scholar 

  32. Plowman, G.D., Culouscou, J-M., Whitney, G.S., et al.: Ligandspecific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc. Natl. Acad. Sci. U.S.A. 90:1746, 1993

    Google Scholar 

  33. Poller, D.N., Spendlove, I., Baker, C., et al.: Production and characterization of a polyclonal antibody to the c-erbB-3 protein: examination of c-erbB-3 protein expression in adenocarcinomas. J. Pathol. 168:275, 1992

    Google Scholar 

  34. King, C.R., Borrello, I., Bellot, F., Comoglio, P., Schlessinger, J.: Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. EMBO J. 7:1647, 1988

    Google Scholar 

  35. Stern, D.F., Kamps, M.P.: EGF-stimulated tyrosine phosphorylation of p185neu: a potential model for receptor interactions. EMBO J. 7:995, 1988

    Google Scholar 

  36. Weidner, N., Folkman, J., Pozza, F., et al.: Tumor angiogenesis: a new significant and independent prognostic indicator in earlystage breast carcinoma. J. Natl. Cancer Inst. 84:1875, 1992

    Google Scholar 

  37. Horak, E.R., Leek, R., Klenk, N., et al.: Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120, 1992

    Google Scholar 

  38. Partanen, J., Vainikka, S., Korhonen, J., Armstrong, E., Alitalo, K.: Diverse receptors for fibroblast growth factors. Prog. Growth Factor Res. 4:69, 1992

    Google Scholar 

  39. Givol, D., Yayon, A.: Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 6:3362, 1992

    Google Scholar 

  40. Nusse, R.: The int genes in mammary tumorigenesis and their role in normal development. Trends Genet 4:292, 1985

    Google Scholar 

  41. Zhou, D.J., Casey, G., Cline, M.J.: Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 2:279, 1988

    Google Scholar 

  42. Lidereau, R., Callahan, R., Dickson, C., Peters, G., Escot, C., Ali, I.U.: Amplification of the int-2 gene in primary human breast tumors. Oncogene Res. 2:285, 1988

    Google Scholar 

  43. Theillet, C., Le Roy, X., De Lapeyriere, O., et al.: Amplification of FGF-related genes in human tumors: possible involvement of HST in breast carcinomas. Oncogene 4:915, 1989 [Published erratum appears in Oncogen 4:1537, 1989]

    Google Scholar 

  44. Theillet, C., Adnane, J., Szepetowski, P., et al.: BCL-1 participates in the 11q13 amplification found in breast cancer. Oncogene 5:147, 1990

    Google Scholar 

  45. McLeskey, S.W., Kurebayashi, J., Honig, S.F., et al.: Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifentreated athymic nude mice. Cancer Res. 53:2168, 1993

    Google Scholar 

  46. Ding, I.Y.F., McLeskey, S.W., Chang, K., et al.: Expression of fibroblast growth factors (FGFs) and receptors (FGFRs) in human breast carcinomas [abstract]. Proc. Am. Assoc. Cancer Res. 33:269, 1992

    Google Scholar 

  47. Lammie, G.A., Fantl, V., Smith, R., et al.: D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 6:439, 1991

    Google Scholar 

  48. Withers, D.A., Harvey, R.C., Faust, J.B., Melnyk, O., Carey, K., Meeker, T.C.: Characterization of a candidate bcl-1 gene. Mol. Cell Biol. 11:4846, 1991

    Google Scholar 

  49. Szepetowski, P., Courseauz, A., Carle, G.F., Theillet, C., Gaudray, P.: Amplification of 11q13 DNA sequences in human breast cancer: D11S97 identifies a region tightly linked to bc11 which can be amplified separately. Oncogene 7:751, 1992

    Google Scholar 

  50. Nonomura, N., Lu, J., Tanaka, A., et al.: Interaction of androgen-induced autocrine heparin-binding growth factor with fibroblast growth factor receptor on androgen-dependent Shionogi carcinoma 115 cells. Cancer Res. 50:2316, 1990

    Google Scholar 

  51. Gilman, A.G.: G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56:615, 1987

    Google Scholar 

  52. Casey, P.J., Gilman, A.G.: G protein involvement in receptoreffector coupling. J. Biol. Chem. 263:2577, 1988

    Google Scholar 

  53. Neer, E.J., Clapham, D.E.: Roles of G protein subunits in transmembrane signalling. Nature 333:129, 1988

    Google Scholar 

  54. Barbacid, M.: ras genes. Annu. Rev. Biochem. 56:779, 1987

    Google Scholar 

  55. Trahey, M., Milley, R.J., Cole, G.E., et al.: Biochemical and biological properties of the human N-ras p21 protein. Mol. Cell Biol. 7:541, 1987

    Google Scholar 

  56. McCormick, F.: Signal transduction: how receptors turn ras on [news; comment]. Nature 363:15, 1993

    Google Scholar 

  57. Trahey, M., McCormick, F.: A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542, 1987

    Google Scholar 

  58. McCormick, F.: The world according to GAP. Oncogene 5:1281, 1990

    Google Scholar 

  59. McCormick, F.: ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5, 1989

    Google Scholar 

  60. Hall, A.: ras and GAP—who's controlling whom? Cell 61:921, 1990

    Google Scholar 

  61. Lowy, D.R., Zhang, K., DeClue, J.E., Willumsen, B.M.: Regulation of p21ras activity. Trends Genet. 7:346, 1991

    Google Scholar 

  62. DeClue, J.E., Cohen, B.D., Lowy, D.R.: Identification and characterization of the neurofibromatosis type 1 protein product. Proc. Natl. Acad. Sci. U.S.A. 88:9914, 1991

    Google Scholar 

  63. Ballester, R., Marchuk, D., Boguski, M., et al.: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851, 1990

    Google Scholar 

  64. Martin, G.A., Viskochil, D., Bollag, G., et al.: The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843, 1990

    Google Scholar 

  65. Xu, G.F., Lin, B., Tanaka, K., et al.: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835, 1990

    Google Scholar 

  66. DeClue, J.E., Papageorge, A.G., Fletcher, J.A., et al.: Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265, 1992

    Google Scholar 

  67. Li, Y., Bollag, G., Clark, R., et al.: Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69:275, 1992

    Google Scholar 

  68. Bos, J.L.: ras Oncogenes in human cancer: a review. Cancer Res. 49:4682, 1989 [Published erratum appears in Cancer Res. 50:1352, 1990]

    Google Scholar 

  69. Garrett, P.A., Hulka, B.S., Kim, Y.L., Farber, R.A.: HRAS protooncogene polymorphism and breast cancer. Cancer Epidemiol. Biomarkers Prev. 2:131, 1993

    Google Scholar 

  70. Yamamoto, K.R.: Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19:209, 1985

    Google Scholar 

  71. Beato, M.: Gene regulation by steroid hormones. Cell 56:335, 1989

    Google Scholar 

  72. Truss, M., Beato, M.: Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr. Rev. 14:459, 1993

    Google Scholar 

  73. Clark, G.M., McGuire, W.L., Hubay, C.A., Pearson, O.H., Carter, A.C.: The importance of estrogen and progesterone receptor in primary breast cancer. Prog. Clin. Biol. Res. 132E:183, 1983

    Google Scholar 

  74. Clark, G.M., McGuire, W.L., Hubay, C.A., Pearson, O.H., Marshall, J.S.: Progesterone receptors as a prognostic factor in stage II breast cancer. N. Engl. J. Med. 309:1343, 1983

    Google Scholar 

  75. Sedlacek, S.M., Horwitz, K.B.: The role of progestins and progesterone receptors in breast cancer. Steroids 44:467, 1984

    Google Scholar 

  76. Gronemeyer, H., Green, S., Kumar, V., Jeltsch, J-M., Chambon, P.: Structure and function of the estrogen receptor and other members of the nuclear receptor family. In Steroid Receptors and Disease, P.J. Sheridan, K. Blum, M.C. Trachtenberg, editors. New York, Marcel Dekker, 1988, pp. 153–187

    Google Scholar 

  77. Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.R., Chambon, P.: Functional domains of the human estrogen receptor. Cell 51:941, 1987

    Google Scholar 

  78. Klein-Hitpass, L., Schorpp, M., Wagner, U., Ryffel, G.U.: An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46:1053, 1986

    Google Scholar 

  79. Berg, J.M.: DNA binding specificity of steroid receptors. Cell 57:1065, 1989

    Google Scholar 

  80. Tsai, S.Y., Carlstedt-Duke, J., Weigel, N.L., et al.: Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55:361, 1988

    Google Scholar 

  81. McDonnell, D.P., Nawaz, Z., O'Malley, B.W.: In situ distinction between steroid receptor binding and transactivation at a target gene. Mol. Cell Biol. 11:4350, 1991

    Google Scholar 

  82. El-Ashry, D., Onate, S.A., Nordeen, S.K., Edwards, D.P.: Human progesterone receptor complexed with the antagonist ru 486 binds to hormone response elements in a structurally altered form. Mol. Endocrinol. 3:1545, 1989

    Google Scholar 

  83. Ing, N.H., Beekman, J.M., Tsai, S.Y., Tsai, M.J., O'Malley, B.W.: Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J. Biol. Chem. 267:17617, 1992

    Google Scholar 

  84. Miner, J.N., Diamond, M.I., Yamamoto, K.R.: Joints in the regulatory lattice: composite regulation by steroid receptor-AP1 complexes. Cell Growth Differ. 2:525, 1991

    Google Scholar 

  85. Power, R.F., Mani, S.K., Codina, J., Conneely, O.M., O'Malley, B.W.: Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254:1636, 1991

    Google Scholar 

  86. Lippman, M.E., Dickson, R.B.: Mechanisms of normal and malignant breast epithelial growth regulation. J. Steroid Biochem. 34:107, 1989

    Google Scholar 

  87. Clarke, C.L., Sutherland, R.L.: Progestin regulation of cellular proliferation. Endocr. Rev. 11:266, 1990

    Google Scholar 

  88. Dickson, R.B., Lippman, M.E.: Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr. Rev. 8:29, 1987

    Google Scholar 

  89. Koga, M., Sutherland, R.L.: Retinoic acid acts synergistically with 1,25-dihydroxyvitamin D3 or antioestrogen to inhibit T-47D human breast cancer cell proliferation. J. Steroid Biochem. Mol. Biol. 39:455, 1991

    Google Scholar 

  90. Fontana, J.A., Nerui, C., Shao, Z-M., Jetten, A.M.: Retinoid antagonism of estrogen-responsive transforming growth factor and pS2 gene expression in breast carcinoma cells. Cancer Res. 52:3938, 1992

    Google Scholar 

  91. McGuire, W.L., Chamness, G.C., Fuqua, S.A.: Estrogen receptor variants in clinical breast cancer. Mol. Endocrinol. 5:1571, 1991

    Google Scholar 

  92. Pfeffer, U., Fecarotta, E., Castagnetta, L., Vidali, G.: Estrogen receptor variant messenger RNA lacking exon 4 in estrogenresponsive human breast cancer cell lines. Cancer Res 53:741, 1993

    Google Scholar 

  93. Bishop, J.M.: Molecular themes in oncogenesis. Cell 64:235, 1991

    Google Scholar 

  94. Wynford-Thomas, D.: Oncogenes and anti-oncogenes; the molecular basis of tumour behaviour. J. Pathol. 165:187, 1991

    Google Scholar 

  95. Escot, C., Theillet, C., Lidereau, R., et al.: Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc. Natl. Acad. Sci. U.S.A. 83:4834, 1986

    Google Scholar 

  96. Varley, J.M., Swallow, J.E., Brammar, W.J., Whittaker, J.L., Walker, R.A.: Alterations to either c-erbB-2(neu) or c-myc protooncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1:423, 1987

    Google Scholar 

  97. Tsuda, H., Hirohashi, S., Shimosato, Y., et al.: Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-1. Cancer Res. 49:3104, 1989

    Google Scholar 

  98. Stewart, T.A., Pattengale, P.K., Leder, P.: Spontaneous mammary adenocarcinoma in transgenic mice that carry and express MTV-myc fusion genes. Cell 38:627, 1984

    Google Scholar 

  99. Schonenberger, C.A., Andres, A.C., Groner, B., Van Der Valk, M., Leneur, M., Gerlinger, P.: Targeted c-myc gene expression in mammary glands of transgenic mice induced mammary tumors with constitutive milk protein gene transcription. EMBO J. 7:169, 1988

    Google Scholar 

  100. Erisman, M.D., Astrin, S.M.: The myc oncogene. In The Oncogene Handbook, E.P. Roddy, A.M. Skalka, T. Curran, editors. Amsterdam, Elsevier, 1988, pp. 341–366

    Google Scholar 

  101. Levine, A.J., Momand, J., Finlay, C.A.: The p53 tumor suppressor gene. Nature 351:453, 1991

    Google Scholar 

  102. Baker, S.J., Fearon, E.R., Nigro, J.M., et al.: Chromosome 17 deletions and p53 mutations in colorectal carcinomas. Science 244:217, 1989

    Google Scholar 

  103. Hartwell, L.: Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 543:546, 1992

    Google Scholar 

  104. Lane, D.P.: p53, Guardian of the genome. Nature 358:15, 1992

    Google Scholar 

  105. Vogelstein, B., Kinzler, K.W.: p53 Function and dysfunction. Cell 70:523, 1992

    Google Scholar 

  106. Friend, S.H., Bernards, R., Rogelj, S., et al.: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643, 1986

    Google Scholar 

  107. Knudson, A.G.: Mutation and cancer—statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U.S.A. 68:820, 1971

    Google Scholar 

  108. Varley, J.M., Armour, J., Swallow, J.L.: The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumors. Oncogene 4:725, 1989

    Google Scholar 

  109. Groner, B., Hynes, N.E.: I. Mutations in human breast cancer cells: dominantly-acting oncogenes and tumor suppressor genes suggest strategies for targeted interference. Int. J. Cancer Suppl. 5:40, 1990

    Google Scholar 

  110. Hall, J.M., Lee, M.K., Newman, B., et al.: Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Ashry, D., Lippman, M.E. Molecular biology of breast carcinoma. World J. Surg. 18, 12–20 (1994). https://doi.org/10.1007/BF00348187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348187

Keywords

Navigation