Skip to main content
Log in

Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Grazing and faecal pellet production by the copepods Calanus helgolandicus and Pseudocalanus elongatus, feeding on the coccolithophore Emiliania huxleyi, were measured under defined laboratory conditions, together with the chemical characteristics and sinking rates of the faecal pellets produced. Ingestion rates of both copepods were equivalent at comparable cell concentrations, the relationship between ingestion rate (I, cells copepod-1 h-1) and food concentration (C, cells ml-1), being I=0.558C for both species. P. elongatus produced a larger number of smaller faecal pellets than C. helgolandicus, but egested a larger volume of material per individual. Only between 27 and 50% of the ingested coccolith calcite was egested in the faecal pellets, and it is possible that acid digestion in the copepod gut is responsible for these considerable losses. Average sinking rates of faecal pellets containing E. huxleyi coccoliths, produced by both species, were >100 m d-1. The implications of the quantitative laboratory estimates for the vertical flux of inorganic carbon are considered using recently studied shelf-break and oceanic E. huxleyi blooms in the N. E. Atlantic as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayukai T, Nishizawa S (1986) Defaecation rate as a possible measure of ingestion rate of Calanus pacificus pacificus (Copepoda: Calanoidea). Bull Plankton Soc Japan 33: 3–10

    Google Scholar 

  • Bathmann UV, Noji TT, Voss M, Peinert R (1987) Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar Ecol Prog Ser 38: 45–51

    Google Scholar 

  • Berger (1973) Deep-sea carbonates: evidence for a coccolith lysocline. Deep-Sea Res 20: 917–921

    Google Scholar 

  • Bienfang PK (1980) Herbivore diet affects fecal pellet sinking rate. Can J Fish aquat Sciences 37: 1352–1357

    Google Scholar 

  • Bramlette MN (1958) Significance of coccolithophorids in calcium carbonate sedimentation. Bull geol Soc Am 69: 121–126

    Google Scholar 

  • Cadee GC (1985) Macroaggregates of Emiliania huxleyi sediment traps. Mar Ecol Prog Ser 24: 193–196

    Google Scholar 

  • Dagg MJ, Walser WE (1986) The effect of food concentration on fecal pellet size in marine copepods. Limnol Oceanogr 31: 1066–1071

    Google Scholar 

  • Fernandez E, Boyd P, Holligan PM, Harbour DS (1993) Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Mar Ecol Prog Ser 97: 271–285

    Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17: 805–815

    Google Scholar 

  • Gamble JC (1978) Copepod grazing during a declining spring phytoplankton bloom in the Northern North Sea. Mar Biol 49: 309–315

    Google Scholar 

  • Gaudy R (1974) Feeding four species of pelagic copepods under experimental conditions. Mar Biol 25: 125–141

    Google Scholar 

  • Gauld DT (1957) A peritrophic membrane in calanoid copepods. Nature, Lond 179: 325–326

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine phytoplanktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8: 229–239

    Google Scholar 

  • Harris RP (1982) Comparison of the feeding behaviour of Calanus and Pseudocalanus in two experimentally manipulated enclosed ecosystems. J mar biol Ass UK 62: 71–91

    Google Scholar 

  • Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd P, Burkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CS, Turner SM, van der Wal P (1993a) A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global biogeochem Cycles 7: 879–900

    Google Scholar 

  • Holligan PM, Groom SB, Harbour DS (1993b) What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea? Fish Oceanogr 2: 175–183

    Google Scholar 

  • Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Phillipe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature, Lond 304: 339–342

    Google Scholar 

  • Honjo S (1976) Coccoliths: production, transportation and sedimentation. Mar Micropaleont 1: 65–79

    Google Scholar 

  • Honjo S, Roman MR (1978) Marine copepod faecal pellets: production, preservation and sedimentation. J mar Res 36: 45–57

    Google Scholar 

  • Huntley M (1981) Nonselective, nonsaturated feeding by three calanid copepod species in the Labrador Sea. Limnol Oceanogr 26: 831–842

    Google Scholar 

  • Ishimaru T, Nishida S, Marumo R (1988) Food size selectivity of zooplankton evaluated from the occurrence of coccolithophorids in the guts. Bull Plankton Soc Japan 35: 101–114

    Google Scholar 

  • Lampitt RS, Noji T, von Bodungen B (1990) What happens to zooplankton faecal pellets? Implications for material flux. Mar Biol 104: 15–23

    Google Scholar 

  • Löhmann H (1902) Die Coccolithophoridae, eine Monographie der Coccolithen-bildenden Flagellaten, zugleich ein Beitrag zur Kenntnis des Mittelmeerauftriebs. Arch Protistenk 1: 89–165

    Google Scholar 

  • Lorenzen CJ, Welschmeyer NA (1983) The in situ sinking rates of herbivore fecal pellets. J Plankton Res 5: 929–933

    Google Scholar 

  • Marshall SM, Orr AP (1955) On the biology of Calanus finmarchicus. VIII. Food uptake, assimilation and excretion in adult and stage V Calanus. J mar biol Ass UK 34: 495–529

    Google Scholar 

  • Martens P (1976) Artspezifische Merkmale der Faeces von vier dominierenden Copepodenarten der Kieler Bucht. Helgoländer wiss Meeresunters 28: 411–416

    Google Scholar 

  • McCave IN (1975) Vertical flux of particles in the ocean. Deep-Sea Res 22: 491–502

    Google Scholar 

  • Murray J, Hjort J (1912) The depth of the ocean. London, MacMillan

    Google Scholar 

  • Noji TT, Estep KW, MacIntyre F, Norrbin F (1991) Image analysis of faecal material grazed upon by three species of copepods. Evidence for coprorhexy, coprophagy and coprochaly. J mar biol Ass UK 71: 465–480

    Google Scholar 

  • Okada H, McIntyre A (1979) Seasonal distribution of modern coccolithophores in the Western North Atlantic Ocean. Mar Biol 54: 319–328

    Google Scholar 

  • Paffenhöfer G-A, Knowles SC (1979) Ecological implications of fecal pellet size, production and consumption by copepods. J mar Res 37: 35–49

    Google Scholar 

  • Pilskaln C, Honjo S (1987) The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global biogeochem Cycles 1: 31–48

    Google Scholar 

  • Roth PH, Mullin MM, Berger WH (1975) Coccolith sedimentation by fecal pellets: laboratory experiments and field observations. Bull geol Soc Am 86: 1079–1084

    Google Scholar 

  • Roy S, Harris RP, Poulet SA (1989) Inefficient feeding by Calanus helgolandicus and Temora longicornis on Coscinodiscus wailesii: quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids. Mar Ecol Prog Ser 52: 145–153

    Google Scholar 

  • Small LF, Fowler SW, Unlu MY (1979) Sinking rates of natural copepod fecal pellets. Mar Biol 51: 233–241

    Google Scholar 

  • Tsuda A, Nemoto T (1990) The effect of food concentration on the faecal pellet size of the marine copepod Pseudocalanus newmani Frost. Bull Plankton Soc Japan 37: 83–90

    Google Scholar 

  • Turner JT, Ferrante JG (1979) Zooplankton fecal pellets in aquatic ecosystems. BioSci 29: 670–677

    Google Scholar 

  • Urban JL, Deibel D, Schwinghammer P (1993) Seasonal variations in the densities of fecal pellets produced by Oikopleura vanhoeffeni (C. Larvacea) and Calanus finmarchicus (C. Copepoda). Mar Biol 117: 607–613

    Google Scholar 

  • Urrere MA, Knauer GA (1981) Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment. J Plankton Res 3: 369–385

    Google Scholar 

  • Voss M (1991) Content of copepod faecal pellets in relation to food supply in Kiel Bight and its effect on sedimentation rate. Mar Ecol Prog Ser 75: 217–225

    Google Scholar 

  • Westbroek P, Young JR, Linschooten K (1989) Coccolith production (biomineralization) in the marine alga Emiliania huxley. J Protozool 36: 368–373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, R.P. Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Bioliogy 119, 431–439 (1994). https://doi.org/10.1007/BF00347540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347540

Keywords

Navigation