Skip to main content
Log in

Sediment-rejection efficiency of 22 species of Australian scleractinian corals

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sediment-rejection rates of 22 Australian midshelf coral species were studied in situ between March and July 1988 at Lizard Island, Great Barrier Reef. Rejection rates of non-branching species were positively correlated with calice size and were faster for fine (63 to 250 μm) than for coarse (500 to 1000 μm) sediment at influxes of 200 mg/cm2. Increasing water turbulence was a more important influence on rejection rates for some species than for others. Most replicates of most species cleared all sediment in 2 d. Of those that did not, some Favia stelligera and Leptoria phrygia showed partial tissue death within 48 h, and Gardineroseris planulata showed partial tissue death within 6 d. Montipora aequituberculata, Porites lobata and P. lutea tolerated sediment for at least 6 d, and exhibited extensive tissue bleaching, but these tissues recovered after sediment removal. Sediment-rejection efficiency and sediment tolerance are not directly related, and wide interspecific differences may occur in both. These findings are correlated with differences in sediment-rejection mechanisms and with ecological distributions on the reef.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abdel-Salam, H. A., Porter, J. W. (1989). Physiological effects of sediment rejection on photosynthesis and respiration in three Caribbean reef corals. Proc. 6th int. coral Reef Symp. 2: 285–292. [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville]

  • Abe, N. (1938). Feeding behavior and the nematocyst of Fungia and 15 other species of corals. Palao trop. biol. Stn Stud. 1: 469–521

    Google Scholar 

  • Aller, R. C., Dodge, R. E. (1974). Animal—sediment relations in a tropical lagoon, Discovery Bay, Jamaica. J. mar. Res. 32: 209–232

    Google Scholar 

  • Ayling, T. A., Ayling, A. L. (1987). Is silt run-off affecting coral communities on the Cape Tribulation fringing reefs? In: Fringing Reef workshop. Baldwin, C. L. (ed.) Great Barrier Reef Marine Park Authority, Townsville, Queensland, p. 83–86

    Google Scholar 

  • Babcock, R. (1986). A comparison of the population ecology of reef flat corals of the family Faviidae (Goniastrea, Platygyra). PhD thesis; James Cook University, Townsville, Queensland

    Google Scholar 

  • Babcock, R., Davies, P. (1991). Effects of sedimentation on settlement of Acropora millepora. Coral Reefs 9: 205–208

    Google Scholar 

  • Bak, R. P. M. (1978). Lethal and sublethal effects of dredging on reef corals. Mar. Pollut. Bull. 9: 14–16

    Google Scholar 

  • Bak, R. P. M., Elgershuizen, J. H. B. W. (1976). Patterns of oil-sediment rejection in corals. Mar. Biol. 37: 105–113

    Google Scholar 

  • Bouchon, C. (1981). Quantitative study of the scleractinian coral communities of a fringing reef of Reunion Island (Indian Ocean). Mar. Ecol. Prog. Ser. 4: 273–288

    Google Scholar 

  • Brafield, A. E. (1964). The oxygen content of interstitial water in sandy shores. J. Anim. Ecol. 33: 97–116

    Google Scholar 

  • Brock, V. E., Van Heukelem, W., Helfrich, P. (1966). An ecological reconnaissance of Johnston Island and the effects of dredging. Tech. Rep. Hawaii Inst. mar. Biol. 11: 1–56

    Google Scholar 

  • Bull, G. D. (1982). Scleratinian coral communities of two inshore high island fringing reefs at Magnetic Island, North Queensland. Mar. Ecol. Prog. Ser. 7: 267–272

    Google Scholar 

  • Chappell, J. (1980). Coral morphology, diversity and reef growth. Nature, Lond. 286: 249–252

    Google Scholar 

  • Collins, J. (1987). Fringing reefs of Magnetic Island. In: Fringing Reef workshop. Baldwin, C. L. (ed.) Great Barrier Reef Marine Park Authority, Townsville, Queensland, p. 44–49

    Google Scholar 

  • Dallmeyer, D. G., Porter, J. W., Smith, G. J. (1982). Effects of particulate peat on the behavior and physiology of the Jamaican reef-building coral Montastrea annularis. Mar. Biol. 68: 229–233

    Google Scholar 

  • Dodge, R. E., Aller, R. C., Thompson, J. (1974). Coral growth related to resupension of bottom sediments. Nature, Lond. 247: 574–577

    Google Scholar 

  • Dodge, R. E., Vaisyns, J. R. (1977). Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. J. mar. Res. 35: 715–730

    Google Scholar 

  • Done, T. J. (1989). Marine habitats of Florence Bay. Report of a survey conducted April 1989 for Brannock Humphreys, Town Planning Consultants. Australian Institute of Marine Science, Townsville, Queensland (unpublished report)

    Google Scholar 

  • Dryer, S., Logan, A. (1978). Holocene reefs and sediments of Castle Harbour, Bermuda. J. mar. Res. 36: 399–425

    Google Scholar 

  • Edmondson, C. H. (1928). The ecology of an Hawaiian coral reef. Bull. Bernice P. Bishop Mus. 45: 1–64

    Google Scholar 

  • Harrigan, J. (1972). The planula larva of Pocillopora damicornis; lunar periodicity of swarming and substratum selection behavior. PhD thesis. University of Hawaii, Honolulu, Hawaii

    Google Scholar 

  • Hodgson, G. (1989). The effects of sedimentation on Indo-Pacific reef corals. PhD thesis. University of Hawaii, Honolulu, Hawaii

    Google Scholar 

  • Hodgson, G. (1990). Tetracycline reduces sedimentation damage to corals. Mar. Biol. 104: 493–496

    Google Scholar 

  • Hubbard, J. A. E. B., Pocock, Y. P. (1972). Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geol. Rdsch. 61: 598–626

    Google Scholar 

  • Johannes, R. E. (1975). Pollution and degradation of coral reef communities. In: Tropical marine pollution. Ferguson Wood, E. J., Johannes, R. E. (eds.) Elsevier, Amsterdam, p. 13–51

    Google Scholar 

  • Lasker, H. (1980). Sediment rejection by reef corals: the roles of behavior and morphology in Montastrea cavernosa (Linnaeus). J. exp. mar. Biol. Ecol. 47: 77–87

    Google Scholar 

  • Logan, A. (1988). Sediment-shifting capability in the Recent solitary coral Scolymia cubensis (Milne-Edwards and Haime) from Bermuda. Bull. mar. Sci. 43: 241–248

    Google Scholar 

  • Loya, Y. (1976). Effects of water turbidity and sedimentation on the community structure of Puerto Rican corals. Bull. mar. Sci. 26: 450–466

    Google Scholar 

  • Mapstone, B. D., Choat, J. H., Cumming, R. L., Oxley, W. G. (1989). The fringing reefs of Magnetic Island: benthic biota and sedimentation; a baseline survey. Great Barrier Reef Marine Park Authority. Townsville, Queensland, (internal report)

    Google Scholar 

  • Maragos, J. E. (1974). Reef corals of Fanning Island. Pacif. Sci. 28: 247–255

    Google Scholar 

  • Maragos, J. E., Roy, K. J., Smith, S. V. (1970). Corals from Fanning Island Lagoon. Rep. Hawaii Inst. Geophys., Honolulu (Mimeo: Ref. 70-23)

  • Marsh, J. A. Jr., Gordon, G. D. (1974). Marine environmental effects of dredging and power plant construction. Techn. Rep. Univ. Guam mar. Lab. 8: 1–56

    Google Scholar 

  • Marshall, S. M., Orr, A. P. (1931). Sedimentation on Low Isles Reef and its relation to coral growth. Scient. Rept. Gt Barrier Reef Exped. 1(5): 94–133

    Google Scholar 

  • Potts, D. C., Done, T. J., Isdale, P. J., Fisk, D. A. (1985). Dominance of a coral community by the genus Porites (Scleractinia). Mar. Ecol. Prog. Ser. 23: 79–84

    Google Scholar 

  • Randall, R. H., Birkeland, C. (1978). Guam's reefs and beaches. Part II: sedimentation studies at Fouha Bay and Ylig Bay. Tech. Rep. Univ. Guam mar. Lab. 47: 1–77

    Google Scholar 

  • Rogers, C. S. (1983). Sublethal and lethal effects of sediments applied to common Caribbean reef corals in the field. Mar. Pollut. Bull. 14: 378–382

    Google Scholar 

  • Roy, K. J., Smith, S. V. (1971). Sedimentation and coral reef development in turbid water: Fanning Island. Pacif. Sci. 25: 234–248

    Google Scholar 

  • Schuhmacher, H. (1977). Ability in fungiid corals to overcome sedimentation. Proc. 3rd int. coral Reef Symp. 1: 503–509. [Taylor, D. L. (ed.) Rosenstiel School of Marine and Atmospheric Science, University of Miami]

  • Sheppard, C. R. C. (1982). Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7: 83–115

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., New York

    Google Scholar 

  • Stafford-Smith, M. G. (1990). The effect of sediments on Australian scleractinian corals. DPhil thesis; University of York, England

    Google Scholar 

  • Stafford-Smith, M. G., Ormond, R. F. G. (1992). Sediment rejection mechanisms of 42 species of Australian scleractinian corals. Aust. J. mar. Freshwat. Res. 43: 683–705

    Google Scholar 

  • Szmant-Froelich, A., Johnson, V., Hoehn, T., Battey, J., Smith, G. J., Fleischmann, E., Porter, J., Dallmeyer, D. (1981). The physiological effects of oil-drilling muds on the Caribbean coral Montastrea annularis. Proc. 4th int. coral Reef Symp. 1: 163–168. [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]

    Google Scholar 

  • UNEP/IUCN (1988a). Coral reefs of the world. Vol. 1. Atlantic and Eastern Pacific. UNEP Regional Seas Directories and Bibliographies, International Union for the Conservation of Nature and Natural Resources (IUCN), IUCN Publishing Services, 219C Huntingdon Road, Cambridge, CB3 ODL, UK, and the United Nations Environment Programme (UNEP), P.O. Box 30529, Nairobi, Kenya

    Google Scholar 

  • UNEP/IUCN (1988b). Coral reefs of the world. Vol. 2. Indian Ocean, Red Sea and Gulf. UNEP Regional Seas Directories and Bibliographies, International Union for the Conservation of Nature and Natural Resources (IUCN), IUCN Publishing Services, 219C huntingdon Road, Cambridge, CB3 ODL, UK, and the United Nations Environment Programme (UNEP), P.O. Box 30529, Nairobi, Kenya

    Google Scholar 

  • UNEP/IUCN (1988c). Coral reefs of the world. Vol. 3. Central and Western Pacific. UNEP Regional Seas Directories and Bibliographies, International Union for the Conservation of Nature and Natural Resources (IUCN), IUCN Publishing Services, 219C Huntingdon Road, Cambridge, CB3 ODL, UK, and the United Nations Environment Programme (UNEP). P. O. Box 30529, Nairobi, Kenya

    Google Scholar 

  • Veron, J. E. N. (1981). The species concept in “Scleractinia of Eastern Australia”. Proc. 4th int. coral Reef Symp. 2: 183–186 [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]

    Google Scholar 

  • Veron, J. E. N. (1986). Corals of Australia and the Indo-Pacific. Angus & Robertson Publishers, North Ryde, N.S.W., Australia

    Google Scholar 

  • Veron, J. E. N. (1987). Checklist of corals from the Daintree reefs. In: Fringing reef workshop. Baldwin, C. L. (ed.) Great Barrier Reef Marine Park Authority, Townsville, Queensland, p. 99–103

    Google Scholar 

  • Veron, J. E. N., Pichon, M. (1976). Scleractinia of Eastern Australia. Part I. Families: Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Veron, J. E. N., Pichon, M. (1980). Scleractinia of Eastern Australia. Part III. Families: Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae. Australian Institute of Marine Science, Townsville, Queensland

    Google Scholar 

  • Veron, J. E. N., Pichon, M. (1982). Scleractinia of Eastern Australia. Part IV. Family: Poritidae. Australian Institute of Marine Science, Townsville, Queensland

    Google Scholar 

  • Veron, J. E. N., Pichon, M., Wijsman-Best, M. (1977). Scleractinia of Eastern Australia. Part II. Families: Faviidae, Trachyphylliidae. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Veron, J. E. N., Wallace, C. C. (1984). Scleractinia of Eastern Australia. Part V. Family: Acroporidae. Australian Institute of Marine Science, Townsville, Queensland

    Google Scholar 

  • Willis, B. (1987). Morphological variation in the reef corals Turbinaria mesenterina and Pavona cactus: synthesis of transplant, histocompatibility, electrophoresis, growth and reproduction studies. PhD thesis. James Cook University, Townsville, Queensland

    Google Scholar 

  • Yamasu, T., Mizofuchi, S. (1989). Effects of synthetic, neutral detergent and red clay on short-term measurements of O2 production in an Okinawan reef coral. Galaxea 8: 127–142

    Google Scholar 

  • Yonge, C. M. (1930). Studies on the physiology of corals. I. Feeding mechanisms and food. Scient. Rept. Gt Barrier Reef Exped. 1(2): 13–57

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stafford-Smith, M.G. Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Marine Biology 115, 229–243 (1993). https://doi.org/10.1007/BF00346340

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346340

Keywords

Navigation