Skip to main content
Log in

Photosynthetic carbon dioxide fixation in zooxanthellae

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The carbon-fixation patterns of freshly isolated zooxanthellae from the hermatypic coral Acropora formosa were examined during a 15 min exposure to sodium mosa were examined during a 15 min exposure to sodium [14C]bicarbonate. The labelling pattern during the first 60 s exposure showed that the C3 carbon-fixation pathway is the major route for photosynthetic carbon fixation in Symbiodinium sp. 3-Phosphoglyceric acid, which constituted >50% of the label after 5 s, steadily decreased over the first 60 s. Hexose phosphates, aspartate, malate and glucose were the other main products during the first 60 s. Over longer periods, significant amounts of the organic acids succinate, aspartate and glutamate were found in the extract along with glucose; but no glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Barnes, D. J., Chalker, B. E. (1990). Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky, Z. (ed.) Coral reefs. Elsevier, Amsterdam, p. 109–131

    Google Scholar 

  • Beardall, J., Bukerjii, D., Glover, H. E., Morris, I. (1976). The path of carbon in photosynthesis by marine phytoplankton. J. Phycol. 12: 409–417

    Google Scholar 

  • Black, C. C., Bender, M. M. (1976). 13C values in marine organisms from the Great Barrier Reef. Aust. J. Pl. Physiol. 3: 25–32

    Google Scholar 

  • Blank, R. J., Trench, R. K. (1988). Immunogold localisation of ribulose-1,5-bisphosphate carboxylase-oxygenase in Symbiodinium kawagutii Trench et Blank, an endosymbiotic dinoflagellate. Endocytobiosis Cell Res. 5: 75–82

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantiation of microgram quantities of protein utilising the principle of protein-dye binding. Analyt. Biochem. 72: 248–254

    Google Scholar 

  • Crossland, C. J., Barnes, D. J. (1977). Gas-exchange studies with the staghorn coral Acropora acuminata and its zooxanthellae. Mar. Biol. 40: 185–194

    Google Scholar 

  • D'Aoust, B. G., White, R., Wells, J. M., Olsen, D. A. (1976). Coralalgal associations: capacity for producing and sustaining elevated oxygen tensions in situ. Undersea biomed. Res. 3: 35–40

    Google Scholar 

  • Downton, W. J. S., Bishop, D. G., Larkum, A. W. D., Osmond, C. B. (1976). Oxygen inhibition of photosynthetic oxygen evolution in marine plants. Oxygen inhibition of photosynthetic oxygen evolution in marine plants. Aust. J. Pl. Physiol. 3: 73–79

    Google Scholar 

  • Giersch, C. (1979). Quantitative high-performance liquid chromatographic analysis of 14C-labelled photosynthetic intermediates in isolated intact chloroplasts. J. Chromat. 172: 153–161

    Google Scholar 

  • Heldt, H. W. (1980). Measurement of metabolite movement across the envelope and of the pH in the stroma and the thylakoid space in intact chloroplasts. Meth. Enzym. 69: 604–613

    Google Scholar 

  • Jeffrey, S. W., Haxo, F. T. (1968). Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol. Bull. mar. biol. Lab., Woods Hole 135: 149–165

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Loeblich III, A. R. (1984). Dinoflagellate physiology and biochemistry. In: Spector, D. L. (ed.). Dinoflagellates. Academic Press, London, p. 299–342

    Google Scholar 

  • McEvoy-Bowe, E. (1985). Cooling plate for cellulose thin-layer electrophoresis and its application to amino acid analysis. J. Chromat. 347: 199–208

    Google Scholar 

  • Morris, I., Darley, M. (1982). Physiology and biochemistry of algae: introduction and bibliography. In: Rosowski, J. R., Parker, B. C. (eds.) Selected papers in phycology. II. Phycological Society of America, Kansas, p. 278–287

    Google Scholar 

  • Mukerji, D., Glover, H. E., Morris, I. (1978). Diversity in the mechanism of carbon dioxide fixation in Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 14: 137–142

    Google Scholar 

  • Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky, Z. (ed.) Coral reefs. Elservier, Amsterdam, p. 75–87

    Google Scholar 

  • Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z. (1984). Fate of photosynthetic-fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. (Ser. B). 222: 181–202

    Google Scholar 

  • Muscatine, L., Pool, R. R., Cernichiari, E. (1972). Some factors influencing selective release of soluble organic material by zoox-anthellae from reef corals. Mar. Biol. 13: 298–308

    Google Scholar 

  • Porter, J. W., Muscatine, L., Dubinsky, Z., Falkowski, P. G. (1984) Primary production and photoadaptation in light- and shadeadapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. (Ser. B) 222: 161–180

    Google Scholar 

  • Schmitz, K., Kremer, B. P. (1977). Carbon fixation and analysis of assimilates in a coral — dinoflagellate symbiosis. Mar. Biol. 42 305–313

    Google Scholar 

  • Streamer, M., McNeil, Y., Yellowlees, D. (1986). The short-term partitioning of carbon-14 assimilate between zooxanthellae and polyp tissue in Acropora formosa. Mar. Biol. 90: 565–573

    Google Scholar 

  • Ting, I. P. (1976). Malate dehydrogenase and other enzymes of C4 acid metabolism in marine plants. Aust. J. Pl. Physiol. 3: 121–127

    Google Scholar 

  • Trench, R. K. (1971). The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc. R. Soc. (Ser. B) 177: 250–264

    Google Scholar 

  • Trench, R. K., (1979). The cell biology of plant — animal symbiosis. A. Rev. Pl. Physiol. 30: 485–531

    Google Scholar 

  • Trench, R. K. (1987). Dinoflagellates in non-parasitic symbioses. In: Taylor, F. G. H. (ed.) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, p. 530–570

    Google Scholar 

  • Tytler, E. M., Trench, R. K. (1986). Activities of enzymes in β-carboxylations and of catalase in cell free preparations from the symbiotic dinoflagellates Symbiodinium spp. from a coral, a clam, and a zoanthid and two sea anemones. Proc. R. Soc. (Ser. B) 228: 483–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streamer, M., McNeil, Y.R. & Yellowlees, D. Photosynthetic carbon dioxide fixation in zooxanthellae. Marine Biology 115, 195–198 (1993). https://doi.org/10.1007/BF00346335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346335

Keywords

Navigation