Skip to main content
Log in

Carbonic anhydrase in deep-sea chemoautotrophic symbioses

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Carbonic anhydrase (CA) facilitates the rapid interconversion of carbon dioxide and bicarbonate. It is ubiquitous among organisms, and participates in numerous cellular processes. In several photoautotrophic marine organisms, CA facilitates uptake of inorganic carbon by catalyzing the reversible dehydration of bicarbonate to carbon dioxide, which diffuses more rapidly across cell membranes. In algal/invertebrate symbioses, this mechanism is correlated with significantly elevated CA activity in tissues where zooxanthellae are housed. Here, we determine whether elevated CA activity is also characteristic of tissues involved in inorganic carbon uptake by chemosynthetic invertebrates. Measurements of CA activity in several chemosynthetic clam and vestimentiferan species indicate that CA facilitates inorganic carbon uptake, with high activities present in clam gill tissue, and vestimentiferan plume and trophosome tissues. However levels of CA activity among species varied widely, from very low in mytilids to extraordinarily high in some vesicomyids and vestimentiferans. High CA activity is generally correlated with other adaptations for control of internal chemical environments where symbionts are housed, such as the presence of serum-borne sulfide-binding moieties. These findings suggest that a CA-based mechanism of carbon uptake may be one of a suite of adaptations to provide symbionts with essential metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. Fedn eur microbiol Soc (FEMS) Microbiol Rev 39: 215–233

    Google Scholar 

  • Anderson AE, Childress JJ, Favuzzi JA (1987) Net uptake of CO2 driven by sulfide and thiosulfate oxidation in the bacterial symbiont-containing clam Solemya reidi. J exp Biol 133: 1–31

    Google Scholar 

  • Arp A, Childress JJ (1981) Blood function in the hydrothermal vent vestimentiferan tube worm. Science, NY 213: 342–344

    Google Scholar 

  • Arp AJ, Childress JJ, Fisher CR Jr. (1984) Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve, Calyptogena magnifica. Physiol Zoöl 57: 648–662

    Google Scholar 

  • Childress JJ, Arp AJ, Fisher CR Jr (1984) Metabolic and blood characteristics of the hydrothermal vent tube-worm Riftia pachyptila. Mar Biol 83: 109–124

    Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr mar biol A Rev 30: 337–441

    Google Scholar 

  • Childress JJ, Fisher CR, Brooks JM, Kennicutt MC II, Bidigare R, Anderson A (1986) A methanotrophic marine molluscan symbiosis: mussels fueled by gas. Science, NY 233: 1306–1308

    Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Arp AJ, Oros DR (1993a) The role of a zinc-based, serum-borne sulphide-binding component in the uptake and transport of dissolved sulphide by the chemoautotrophic symbiont-containing clam Calyptogena elongata. J exp Biol 179: 131–158

    Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991a) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biol Bull mar biol Lab, Woods Hole 180: 135–153

    Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Sanders NK (1991b) Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica, and its chemoautotrophic symbionts. Physiol Zoöl 64: 1444–1470

    Google Scholar 

  • Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt MC, Brooks J (1993b) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature, Lond 362: 147–149

    Google Scholar 

  • Coleman JR, Berry JA, Togasaki RK, Grossman AR (1984) Identification of extracellular carbonic anhydrase of Chlamydomonas reinhardtii. Pl Physiol 76: 472–477

    Google Scholar 

  • Doeller JE, Kraus DW, Colacino JM, Wittenberg JB (1988) Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya telum (Bivalvia, Mollusca). Biol Bull mar biol Lab, Woods Hole 175: 38–396

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. CRC critical Rev aquat Sciences 2: 399–436

    Google Scholar 

  • Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Felbeck H, Fritz LW, Hessler R, Johnson KS, Kennicutt MC II, Lutz RA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988a) Microhabitat variation in the hydrothermal vent clam, Calyptogena magnifica, at Rose Garden vent on the Galapagos rift. Deep-Sea Res 35: 1811–1832

    Google Scholar 

  • Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Felbeck H, Hessler R, Johnson KS, Kennicutt MC II, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988b) Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos rift. Deep-Sea Res 35: 1769–1792

    Google Scholar 

  • Fisher CR, Childress JJ, Sanders NK (1988c) The role of vestimentiferan hemoglobin in providing an environment suitable for chemoautotrophic sulfide-oxidizing endosymbionts. Symbiosis 5: 229–246

    Google Scholar 

  • Henry RP, Saintsing DG (1983) Carbonic anhydrase activity and ion regulation in three species of osmoregulating bivalve molluscs. Physiol Zoöl 56: 274–280

    Google Scholar 

  • Hogetsu D, Miyachi S (1979) Role of carbonic anhydrase in photosynthetic CO2 fixation in Chlorella. Pl Cell Physiol, Tokyo 20: 747–756

    Google Scholar 

  • Kochevar RE, Childress JJ, Fisher CR, Minnich L (1992) The methane mussel: roles of symbiont and host in the metabolic utilization of methane. Mar Biol 112: 389–401

    Google Scholar 

  • Kochevar RE, Govind NS, Childress JJ (1983) Identification and characterization of two carbonic anhydrases from the hydrothermal vent tubeworm Riftia pachyptila Jones. Molec mar Biol Biotechnol 2: 10–19

    Google Scholar 

  • Kraus DW, Wittenberg J (1990) Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands. J biol Chem 265: 16043–16053

    Google Scholar 

  • Lowry OH, Roseborough NJ, Farr AL, Randall RJ (1951) Protein measurement with the phenol reagent. J biol Chem 193: 265–275

    Google Scholar 

  • Lucas WJ, Berry JA (1985) Inorganic carbon transport in aquatic photosynthetic organisms. Physiologia Pl 65: 539–543

    Google Scholar 

  • Lutz RA, Fornari DJ, Haymon RM, Lilley MD, Von Damm KL, Desbruyeres D (1994) Rapid growth at deep-sea vents. Nature, Lond 371: 663–664

    Google Scholar 

  • Mann T, Keilin D (1940) Sulphanilamide as a specific inhibitor of carbonic anhydrase. Nature, Lond 146: 164–165

    Google Scholar 

  • Nielsen SA, Frieden E (1972) Carbonic anhydrase activity in molluses. Comp Biochem Physiol 41B: 461–468

    Google Scholar 

  • O'Brien J, Vetter RD (1990) Production of thiosulfate during sulphide oxidation by mitochondria of the symbiont-containing bivalve Solemya reidi. J exp Biol 149: 133–148

    Google Scholar 

  • Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull mar biol Lab, Woods Hole 169: 164–181

    Google Scholar 

  • Powell MA, Somero GN (1986) Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi. Science, NY 233: 563–566

    Google Scholar 

  • Raven JA (1991) Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Can J Bot 69: 908–924

    Google Scholar 

  • Scott KM, Fisher CR, Vodenichar JS, Nix ER, Minnich E (1994) Inorganic carbon and temperature requirements for autotrophic canbon fixation by the chemoautotrophic symbionts of the giant hydrothermal vent tube worm, Riftia pachyptila. Physiol Zoöl 67: 617–638

    Google Scholar 

  • Terwilliger RC, Terwilliger NB, Arp AJ (1983) Thermal vent clam (Calyptogena magnifica) hemoglobin. Science, NY 219: 981–983

    Google Scholar 

  • Vetter RD (1985) Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar Biol 88: 33–42

    Google Scholar 

  • Weis VM (1991) The induction of carbonic anhydrase in the symbiotic sea anemone Aiptasia pulchella. Biol Bull mar biol Lab, Woods Hole 180: 496–504

    Google Scholar 

  • Weis VM, Smith GJ, Muscatine L (1989) A “CO2 supply” mechanism in zooxanthellate enidarians: role of carbonic anhydrase. Mar Biol 100: 195–202

    Google Scholar 

  • Wittenberg BA (1985) Oxygen supply to intracellular bacterial symbionts. Bull biol Soc Wash 6: 301–310

    Google Scholar 

  • Yellowlees D, Dionisio-Sese ML, Masuda K, Maruyama T, Abe T, Baillie D, Tsuzuki M, Miyachi S (1993) Role of carbonic anhydrase in the supply of inorganic carbon to the giant clam-zooxanthellate symbiosis. Mar Biol 115: 605–611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.F. Strathmann, Friday Harbor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochevar, R.E., Childress, J.J. Carbonic anhydrase in deep-sea chemoautotrophic symbioses. Marine Biology 125, 375–383 (1996). https://doi.org/10.1007/BF00346318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346318

Keywords

Navigation