Skip to main content
Log in

Induction of trypsinogen secretion in herring larvae (Clupea harengus)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Mechanisms initiating trypsinogen secretion were studied in laboratory reared herring larvae (Clupea harengus L.) exposed to physical and chemical stimuli. Pancreatic secretion of trypsinogen was quantified for each stimulus type as the increase above pre-stimulus level of intestinal trypsin content. Larval prey types were: nauplii, copepodites or adult Acartia tonsa, small polystyrene spheres (diameter 94 μm), small (diameter 79 μm) or large (diameter 170 μm) polystyrene-latex spheres. Intestinal trypsin content can be expressed as a function of two variables: meal size and content of pancreatic trypsinogen. Trypsinogen secretion increases with different prey items in the order: small spheres, nauplii and copepodites. Larvae which eat large spheres secrete more enzyme than if fed small spheres but trypsinogen secretion is similar in fish larvae fed copepodites and large spheres. The fact that the size of non-biodegradable particles exerts a major control over trypsinogen secretion suggests neural — as opposed to chemically mediated — initiation of secretion. A cephalic phase of secretory stimulation could not be demonstrated during swallowing of copepods or exposure for 2 to 3 h to compounds which leak from live copepodites. As cephalic and gastric phases of secretory stimulation are absent, initiation of trypsinogen secretion must take place in the intestine. Larval herring retain trypsin in the intestine. Ca. 4.5 h after a meal, 3/4 of the enzyme is located in the intestinal fluid, presumably available for hydrolysis of subsequent meals, and the high proportion (ca. 25%) of the pancreatic trypsinogen content which is secreted for copepodite prey may thus not be energetically wasteful for the larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Castel, J., Veiga, J. (1990). Distribution and retention of the copepod Eurytemora affinis hirundoides. Mar. Biol. 107: 119–128

    Google Scholar 

  • Fänge, R., Grove, D. (1979). Digestion. In: Hoar, W. S., Randall, D. J., Brett, J. R. (eds.) Fish physiology 8. Academic Press, New York, p. 161–260

    Google Scholar 

  • Green, G. M., Lyman, R. L. (1972). Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc. Soc. exp. Biol. Med. 140: 1–12

    Google Scholar 

  • Green, G. M., Olds, B. A., Matthews, G., Lyman, R. L. (1973). Protein as a regulator of pancreatic enzyme secretion in the rat. Proc. Soc. exp. Biol. Med. 142: 1162–1167

    Google Scholar 

  • Govoni, J., Boehlert, G. W., Watanabe, Y. (1986). The physiology of digestion in fish larvae. Envir. Biol. Fish. 16 (1–3): 59–77

    Google Scholar 

  • Grendell, J. H., Tseng, H. C., Rothman, S. S. (1984). Regulation of digestion. 1. Effects of glucose and lysine on pancreatic secretion. Am. J. Physiol. 246: G445-G450

    Google Scholar 

  • Hirschowitz B. I. (1989). Neural and hormonal control of gastric secretion. In: Schultz, S. G., Forte, J. G., Rauner, B. B. (eds.) Handbook of physiology, Sect. 6. The gastrointestinal system, Vol. 8. American Physiology Society, Oxford University Press, New York, p. 1–759

    Google Scholar 

  • Hjelmeland, K., Huse, I., Jørgensen, T., Molvik, G., Raa, J. (1984). Trypsin and trypsinogen as indices of growth and survival potential of cod (Gadus morhua L.) larvae. In: Dahl, E., Danielsen, D. S., Moksnes, E., Solemdal, P. (eds.) Flødevigen Rapporter 1. The propagation of cod Gadus morhua L. Institute of Marine Research, Flødevigen Biological Station, Flødevigen, Norway, p. 189–202

    Google Scholar 

  • Hjelmeland, K., Jørgensen, T. (1985). Evaluation of radioimmunoassay as a method to quantify trypsin and trypsinogen in fish. Trans. Am. Fish. Soc. 114: 619–621

    Google Scholar 

  • Hjelmeland, K., Pedersen, B. H., Nilssen, E. M. (1988). Trypsin content in intestines of herring larvae, Clupea harengus ingesting inert polystyrene spheres or live crustacea prey. Mar. Biol. 98: 331–335

    Google Scholar 

  • Larsson, L.-I., Rehfeld, J. F. (1977). Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature, Lond. 269 (5626): 335–338

    Google Scholar 

  • Miller, C. B., Johnson, J. K. (1977). Growth rules in the marine copepod genus Acartia. Limnol. Oceanogr. 22 (2): 326–335

    Google Scholar 

  • Pedersen, B. H. (1984). The intestinal evacuation rates of larval herring (Clupea harengus L.) predating on wild plankton. Dana 3: 21–30

    Google Scholar 

  • Pedersen, B. H., Hjelmeland, K. (1988). Fate of trypsin and assimilation efficiency in larval herring (Clupea harengus) following digestion of copepods. Mar. Biol. 97: 467–476

    Google Scholar 

  • Pedersen, B. H., Nilssen, E. M., Hjelmeland, K. (1987). Variations in the content of trypsin and trypsinogen in larval herring (Clupea harengus) digesting copepod nauplii. Mar. Biol. 94: 171–181

    Google Scholar 

  • Pedersen, B. H., Ugelstad, I., Hjelmeland, K. (1990) Effects of a transitory, low food supply in the early life of larval herring (Clupea harengus) on mortality, growth and digestive capacity. Mar. Biol. 107: 61–66

    Google Scholar 

  • Rothman, S. S. (1974). Molecular regulation of digestion: short term and bond specific. Am. J. Physiol. 226 (1): 77–83

    Google Scholar 

  • Rothman, S. S. (1989). Regulation of digestive reactions by the pancreas. In: Schultz, S. G., Forte, J. G., Rauner, B. B. (eds.) Handbook of physiology, Sect. 6. The Gastrointestinal System, Vol. 8. American Physiology Society, Oxford University Press, New York, p. 1–759

    Google Scholar 

  • Sandholm, M., Scott, M. L. (1979). Binding of lipase, amylase and protease to the intestinal epithelium as affected by carbohydrates and lectins in vitro. Acta vet. scand. 20: 329–342

    Google Scholar 

  • Schneeman, B. O., Lyman, R. L. (1975). Factors involved in the intestinal feedback regulation of pancreatic enzyme secretion in the rat. Proc. Soc. exp. Biol. Med. 148: 897–903

    Google Scholar 

  • Schulz, I. (1989). Signaling transduction in hormone — and neurotransmitter — induced enzyme secretion from the exocrine pancreas. In: Schultz, S. G., Forte, J. G., Rauner, B. B. (eds.). Handbook of physiology, Sect. 6. The Gastrointestinal System, Vol. 8. American Physiology Society, Oxford University Press, New York, p. 1–759

    Google Scholar 

  • Silen, W. (1974). Peptic ulcer. In: Wintrobe M. M., Thorn, G. W., Adams, R. D., Braunwald, E., Issesbacher, K. J., Petersdorf, R. G. (eds.) Harrison's principles of internal medicine, 7th edn., McGraw-Hill, New York, p. 1–2044

    Google Scholar 

  • Snodgrass, P. J. (1974). Diseases of the pancreas. In: Wintrobe, M. M., Thorn, G. W., Adams, R. D., Braunwald, E., Issesbacher, K. J., Petersdorf, R. G. (eds.) Harrison's principles of internal medicine, 7th edn., McGraw-Hill, New York, p. 1–2044

    Google Scholar 

  • Snook, J. T. (1965). Dietary regulation of pancreatic enzyme synthesis, secretion and inactivation in the rat. J. Nutr. 87: 297–305

    Google Scholar 

  • Ueberschär, B. F. R. (1988). Determination of the nutritional condition of individual marine fish larvae by analyzing their proteolytic enzyme activities with a highly sensitive fluorescence technique. Meeresforsch. Rep. mar. Res. 32: 144–154 (Ber. dt. wiss. Kommn Meeresforsch.)

    Google Scholar 

  • Vander, A. J., Sherman, J. H., Luciano, D. S. (1990). Human physiology, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Williams, J. A., Burnham, D. B., Hootman, S. R. (1989). Cellular regulation of pancreatic secretion. In: Schultz, S. G., Forte, J. G., Rauner, B. B. (eds.) Handbook of physiology, Sect. 6. The gastrointestinal system, Vol. 8. American Physiology Society, Oxford University Press, New York, p. 1–759

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, B.H., Andersen, K.P. Induction of trypsinogen secretion in herring larvae (Clupea harengus). Marine Biology 112, 559–565 (1992). https://doi.org/10.1007/BF00346173

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346173

Keywords

Navigation