Skip to main content
Log in

A model describing nonlinearities in hearing by active processes with saturation at 40 dB

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Data from literature related to nonlinearities of the peripheral part of the hearing system are collected and extended by results from measurements of acoustical responses, masking, cubic difference tones and Zwicker tones. The data indicate 40 dB as a significant value for the dynamic range in neurophysiology as well as for the sensation level in psychoacoustics dividing the total level range into two areas of different characteristics. A preliminary model assuming that the outer hair cells act as an amplifier which contains saturation (corresponding to 40 dB) and feed back to sensitize the inner hair cells is used to describe the measured effects at least qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Békésy, G. von: Über die Resonanzkurve und die Abklingzeit der verschiedenen Stellen der Schneckentrennwand. Akust. Z. 8, 66–76 (1943)

    Google Scholar 

  2. Brugge, J.F., Javel, E., Kitzer, L.M.: Signs of functional maturation of peripheral auditory system in discharge patterns of neurons in anteroventral cochlear nucleus of kitten. J. Neurophysiol. 41, 1557–1579 (1978)

    Google Scholar 

  3. Buunen, T.J.F., Rhode, W.S.: Responses of fibers in the cat's auditory nerve to the cubic difference tone. J. Acoust. Soc. Am. 64, 772–781 (1978)

    Google Scholar 

  4. Dallos, P., Harris, D.: Properties of auditory nerve responses in absence of outer hair cells. J. Neurophysiol. 41, 365–383 (1978)

    Google Scholar 

  5. Deol, M.S., Gluecksohn-Waelsch, S.: The role of inner hair cells in hearing. Nature 278, 250–252 (1979)

    Google Scholar 

  6. Evans, E.F.: Auditory frequency selectivity and the cochlear nerve. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), pp. 118–129. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  7. Evans, E.F.: Cochlear nerve and cochlear nucleus. In: Handbook of sensory physiology, Vol. V/2. Keidel, W.D., Neff, W.D., (eds.) Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  8. Evans, E.F.: The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology (Basel) 14, 419–442 (1975)

    Google Scholar 

  9. Evans, E.F., Harrison, R.V.: Correlation between cochlear outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea pig. J. Physiol. 256, 43–44 (1975)

    Google Scholar 

  10. Evans, E.F., Klinke, R.: Reversible effects of cyanide and frusemide on the tuning of single cochlear fibres. J. Physiol. (London) 242, 129–131 (1974)

    Google Scholar 

  11. Evans, E.F., Wilson, J.P.: Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 190, 1218–1221 (1975)

    Google Scholar 

  12. Geisler, C.D.: Model of crossed olivocochlear bundle effects. J. Acoust. Soc. Am. 56, 1910–1912 (1974)

    Google Scholar 

  13. Hawkins, J.E., Jr., Stevens, S.S.: Masking of pure tones and of speech by white noise. J. Acoust. Soc. Am. 22, 6–13 (1950)

    Google Scholar 

  14. Kemp, D.T.: Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64, 1386–1391 (1978)

    Google Scholar 

  15. Kiang, N.Y.S., Watanabe, T., Thomas, E.C., Clark, L.F.: Discharge patterns of single fibers in the cat's auditory nerve. MIT Research Monograph 35. Cambridge, Mass.: MIT Press 1965

    Google Scholar 

  16. Kim, D.O., Siegel, J.H., Molnar, C.E.: Cochlear nonlinear phenomena in two-tone responses. Scand. Audiology (in press) (1979)

  17. Kohllöffel, L.U.E.: A study of basilar membrane mechanis. I–III. Acustica 27, 49–89 (1972)

    Google Scholar 

  18. Lummis, R.C., Guttman, N.: Exploratory studies of Zwicker's “negative afterimage” in hearing. J. Acoust. Soc. Am. 51, 1930–1944 (1972)

    Google Scholar 

  19. Manley, G.A.: Frequency-dependent extracellular interaction between hair cells as a possible mechanism for cochlear frequency sharpening. In: Psychophysics and physiology of hearing. Evans, E.F., Wilson, J.P. (eds.) London: Academic Press 1977

    Google Scholar 

  20. Manley, G.A.: Cochlear frequency sharpening—a new synthesis. Acta Otolaryngol. 85, 167–176 (1978)

    Google Scholar 

  21. Neelen, J.J.M.: Auditory afterimages produced by incomplete line spectra. Inst. Perception Res., Eindhoven, IPO Ann. Progr. Rep. No. 2. Netherlands (1967)

    Google Scholar 

  22. Pfeiffer, R.R., Molnar, C.E., Cox, J.R., Jr.: The representation of tones and combination tones in spike discharge patterns of single cochlear nerve fibers. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), pp. 323–331. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  23. Rhode, W.S.: Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am. 49, 1218–1231 (1971)

    Google Scholar 

  24. Rhode, W.S.: Some observations on cochlear mechanics. J. Acoust. Soc. Am. 64, 158–176 (1978)

    Google Scholar 

  25. Robertson, D., Manley, G.A.: Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J. Comp. Physiol. 91, 363 (1974)

    Google Scholar 

  26. Rose, J.E., Hind, J.E., Anderson, D.J., Brugge, J.F.: Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J. Neurophysiol. 34, 685–699 (1971)

    Google Scholar 

  27. Russell, I.J., Sellick, P.M.: Intracellular studies of hair cells in the mammalian cochlea. J. Physiol. 284, 261–290 (1978)

    Google Scholar 

  28. Schloth, E.: Im äußeren Gehörgang gemessene akustische Antworten auf Schallreize. Acustica (in press)

  29. Schöne, P.: Mithörschwellen-Tonheitsmuster maskierender Sinustöne. Acustica 43, 197–204 (1979)

    Google Scholar 

  30. Smoorenburg, G.F.: On the mechanisms of combination tone generation and lateral inhibition in hearing. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), pp. 332–342. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  31. Smoorenburg, G.F., Gibson, M.M., Kitzer, L.M., Rose, J.E., Hind, J.E.: Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat. J. Acoust. Soc. Am. 59, 945–962 (1976)

    Google Scholar 

  32. Spoendlin, H.: Neural connections of the outer haircell system. Acta Otolaryngol. 87, 381–387 (1979)

    Google Scholar 

  33. Wegel, R.L., Lane, C.E.: The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys. Rev. 23, 266–285 (1924)

    Google Scholar 

  34. Wilson, J.P., Johnstone, J.R.: Basilar membrane and middle-ear vibrations in guinea pig measured by capacitive probe. J. Acoust. Soc. Am. 57, 705–723 (1975)

    Google Scholar 

  35. Zwicker, E.: Der ungewöhnliche Amplitudengang der nichtlinearen Verzerrungen des Ohres. Acustica 5, 67–74 (1955)

    Google Scholar 

  36. Zwicker, E.: “Negative afterimage” in hearing. J. Acoust. Soc. Am. 36, 2413–2415 (1964)

    Google Scholar 

  37. Zwicker, E.: Der kubische Differenzton und die Erregung des Gehörs. Acustica 20, 206–209 (1968)

    Google Scholar 

  38. Zwicker, E.: Psychoacoustic equivalent of period histograms. J. Acoust. Soc. Am. 59, 166–175 (1976)

    Google Scholar 

  39. Zwicker, E.: A model for predicting masking-period patterns. Biol. Cybernetics 23, 49–60 (1976)

    Google Scholar 

  40. Zwicker, E.: Different behavior of quadratic and cubic difference tones. Hearing Res. (in press) (1979)

  41. Zwicker, E.: Zur Nichtlinearität ungerader Ordnung des Gehörs. Acustica 42, 149–157 (1979)

    Google Scholar 

  42. Zwicker, E., Feldtkeller, R.: Das Ohr als Nachrichtenempfänger, 2. erw. Aufl. Stuttgart: Hirzel 1967

    Google Scholar 

  43. Zwislocki, J.J., Sokolich, W.G.: Neuro-mechanical frequency analysis in the cochlea. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), pp. 107–117. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwicker, E. A model describing nonlinearities in hearing by active processes with saturation at 40 dB. Biol. Cybernetics 35, 243–250 (1979). https://doi.org/10.1007/BF00344207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00344207

Keywords

Navigation