Skip to main content
Log in

Longitudinal fibre division in skeletal muscle: A light- and electronmicroscopic study

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Under conditions of overloading, muscle fibres have been reported to undergo a process of longitudinal division. It has been claimed that this process leads to an increase in cross-sectional area and therefore contributes to the force of contraction. Recent work, however has demonstrated that the division is of limited extent and apparently pathological in origin. Examination of material taken from the immediate vicinity of a crush lesion has shown that a similar picture is reproduced by gross trauma. An electronmicroscopic study of dividing fibres in both overloaded and traumatized muscles has confirmed their similarity and revealed that atrophic changes are present. This evidence is sufficient to suggest that the longitudinal division of fibres seen in overloaded muscles and possibly in dystrophic muscles follows damage to the fibre and that division in this manner may allow the rejection from it of degenerated portions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbrook, D. B.: An electron microscope study of regenerating skeletal muscle. J. Anat. (Lond). 96, 137–152 (1962).

    Google Scholar 

  • —, Baker, W. de C., Kirkaldy-Willis, W. H.: Muscle regeneration in experimental animals and in man. J. Bone Jt Surg. B 48, 153–169 (1966).

    Google Scholar 

  • Bergman, R. A.: Observations on the morphogenesis of rat skeletal muscle. Bull. Johns Hopk. Hosp. 110, 187–201 (1962).

    Google Scholar 

  • Church, J. C. T., Norhonha, R. F. X., Allbrook, D. B.: Satellite cells and skeletal muscle regeneration. Brit. J. Surg. 53, 638–642 (1966).

    Google Scholar 

  • Clark, W. E. Le Gros: An experimental study of the regeneration of mammalian striped muscle. J. Anat. (Lond.) 80, 24–36 (1946).

    Google Scholar 

  • —, Blomfield, L. B.: The efficiency of intramuscular anastomoses, with observations on the regeneration of devascularized muscle. J. Anat. (Lond.) 79, 15–32 (1945).

    Google Scholar 

  • Cornog, J. L., Jr., Gonatas, N. K.: Ultrastructure of rhabdomyoma. J. Ultrastruct. Res. 20, 433–450 (1967).

    Google Scholar 

  • Durante, G. In: Manuel d' Histologie Pathologique. V. Arnil et L. Ranvier. Paris: Felix Alcan 1902.

    Google Scholar 

  • Ekstedt, J., Stålberg, E.: Abnormal connections between skeletal muscle fibres. Electroenceph. clin. Neurophysiol. 27, 607–609 (1969).

    Google Scholar 

  • Engel, W. K.: Focal myopathic changes produced by electromyographic and hypodermic needles. Arch. Neurol. (Chic.) 16, 509–511 (1967).

    Google Scholar 

  • —, Brooke, M. H.: Muscle biopsy as a clinical aid. In: Neurological diagnostic techniques, ed. W. S. Fields. p. 99–146. Springfield, Ill.: Ch. C. Thomas 1966.

    Google Scholar 

  • Erb, W. H.: Dystrophia muscularis progressiva. Klinische und pathologische Studien. Dtsch. Z. Nervenheilk. 1, 173–261 (1891).

    Google Scholar 

  • Ezerman, E. B., Ishikawa, H.: Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro. J. Cell Biol. 35, 405–420 (1967).

    Google Scholar 

  • Fischman, D. A.: An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J. Cell Biol. 32, 557–575 (1967).

    Google Scholar 

  • Franzini-Armstrong, C., Porter, K. R.: Sarcolemmal invaginations and the T-system in fish skeletal muscle. Nature (Lond.) 202, 355–357 (1964).

    Google Scholar 

  • Gray, E. G.: Accurate localization in ultrathin sections by direct observation of the block face for trimming. Stain Technol. 36, 42–44 (1961).

    Google Scholar 

  • Gutman, E., Zák, R.: Nervous regulation of nucleic acid level in cross-striated muscle. Changes in denervated muscle. Physiol. bohemoslov. 10, 493–500 (1961).

    Google Scholar 

  • Hall-Craggs, E. C. B.: The longitudinal division of fibres in overloaded rat skeletal muscle. J. Anat. (Lond.) (in press).

  • Lawrence, C. A.: Longitudinal fibre division in rat skeletal muscle. J. Physiol. (Lond.) 202, 76P (1969).

    Google Scholar 

  • Hathaway, P. W., Dahl, D. S., Engel, W. K.: Myopathic changes produced by local trauma. Arch. Neurol. (Chic.) 21, 355–357 (1969).

    Google Scholar 

  • Huxley, H. E.: Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature (Lond.) 202, 1067–1071 (1964).

    Google Scholar 

  • Ishikawa, H.: Electron microscopic observations of satellite cells with special reference to the development of mammalian skeletal muscles. Z. Anat. Entwickl.-Gesch. 125, 43–63 (1966).

    Google Scholar 

  • —: Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J. Cell Biol. 38, 51–66 (1968).

    Google Scholar 

  • Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137A (1965).

    Google Scholar 

  • Kaspar, U., Weismann, U., Mumenthaler, M.: Necrosis and regeneration of the tibialis anterior muscle in rabbit. Arch. Neurol. (Chic.) 21, 363–372 (1969).

    Google Scholar 

  • Kelly, D. E.: Myofibrillogenesis and Z-band differentiation. Anat. Rec. 163, 403–426 (1969).

    Google Scholar 

  • Krolenko, S. A.: Changes in the T-system of muscle fibres and the influence of influx and efflux of glycerol. Nature (Lond.) 221, 966–968 (1969).

    Google Scholar 

  • Le Beux, Y., Geza, H., Phillips, M. J.: Mitochondrial myelin-like figures: a non-specific reactive process of mitochondrial phospholipid membranes to several stimuli. Z. Zellforsch. 99, 491–506 (1969).

    Google Scholar 

  • Linge, B., van: The response of muscle to strenuous excercise. J. Bone Jt Surg. B44, 711–721 (1962).

    Google Scholar 

  • Mauro, A.: Satellite cell of skeletal muscle fibers. J. biophys. biochem. Cytol. 9, 493–495 (1961).

    Google Scholar 

  • Muir, A. R., Kanji, A. H. M., Allbrook, D.: The structure of the satellite cells in skeletal muscle. J. Anat. (Lond.) 99, 435–444 (1965).

    Google Scholar 

  • Muscatello, U., Margreth, A., Aloisi, M.: On the differential response of sarcoplasm and myoplasm to denervation in frog muscle. J. Cell Biol. 27, 1–24 (1965).

    Google Scholar 

  • Nachlas, M. M., Tsou, K-C., De Souza, E., Cheng, C. S., Seligman, A. M.: Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5, 420–436 (1957).

    Google Scholar 

  • Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952).

    Google Scholar 

  • Pellegrino, C., Franzini, C.: An electron microscope study of denervation atrophy in red and white skeletal muscle fibers. J. Cell Biol. 17, 327–349 (1963).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Romanul, F. C. A., Hogan, E. L.: Enzymatic changes in denervated muscle. I. Histochemical studies. Arch. Neurol. (Chic.) 13, 263–273 (1965).

    Google Scholar 

  • Schiaffino, S., Magreth, A.: Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. J. Cell Biol. 41, 855–875 (1969).

    Google Scholar 

  • Shafiq, S. A., Gorycki, M. A., Mauro, A.: Mitosis during postnatal growth in skeletal and cardiac muscle of the rat. J. Anat. (Lond.) 103, 135–141 (1968).

    Google Scholar 

  • Teräväinen, H.: Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibres. Z. Zellforsch. 103, 320–327 (1970).

    Google Scholar 

  • Trump, B. F., Ericsson, J. L. E.: The effect of the fixative solution on the ultrastructure of cells and tissues. A comparative analysis with particular attention to the proximal convoluted tubule of the rat kidney. Lab. Invest. 14, 1245–1323 (1965).

    Google Scholar 

  • Walker, B. E.: The origin of myoblasts and the problem of dedifferentiation. Exp. Cell Res. 30, 80–92 (1963).

    Google Scholar 

  • Walton, J. N., Adams, R. D.: The response of the normal, the denervated and the dystrophic muscle cell to injury. J. Path. Bact. 72, 273–298 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Professor J. Z. Young, F.R.S. for his advice and encouragement and Mr. A. Aldrich and Mr. D. Gunn for their assistance with the illustrations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall -Craggs, E.C.B., Lawrence, C.A. Longitudinal fibre division in skeletal muscle: A light- and electronmicroscopic study. Z. Zellforsch. 109, 481–494 (1970). https://doi.org/10.1007/BF00343963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00343963

Key-Words

Navigation