Skip to main content
Log in

A model for direction selectivity in threshold motion perception

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Thresholds were measured for a moving line superimposed on moving sinusoidal gratings. When line and grating moved in the same direction significant subthreshold summation was observed over a range of spatial frequencies. For motion of the line and grating in opposite directions, summation was never observed. This supports the hypothesis that direction selective mechanisms are responsible for motion perception at threshold. Further analysis of the data produced estimates of the spatial frequency tuning of these mechanisms. A quantitative model is proposed to interpret the data, and it is suggested that flickering gratings are not decomposed into their moving components by the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. Presented at the Annual Meeting, Optical Society of America, October, 1983

  • Barlow, H.B., Levick, W.R.: The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178, 477–504 (1965)

    Google Scholar 

  • Bergen, J.R., Wilson, H.R.: Prediction of flicker sensitivities from temporal pulse data. Vision Res. (in press, 1985)

  • Bishop, P.O., Coombs, J.S., Henry, G.H.: Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurons. J. Physiol. 219, 625–657 (1971)

    Google Scholar 

  • Burt, P.J.: Time-space limits on information processing in early vision: a computational perspective. Presented at the Annual Meeting, Optical Society of America, October, 1983

  • Crane, H.D., Steele, C.M.: Accurate three-dimensional eyetacker. Appl. Opt. 17, 619–705 (1978)

    Google Scholar 

  • Foster, D.H.: A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik 8, 69–84 (1971)

    Google Scholar 

  • Ganz, L.: Properties of cortical inhibition in directionally selective neurons: some neurophysiological parallels to the perception of movement. In: Visual psychophysics and physiology. Pp. 115–126. Armington, J.C., Krauskopf, J., Wooten, B.R., eds New York: Academic Press 1978

    Google Scholar 

  • Goodwin, A.W., Henry, G.H., Bishop, P.O.: Direction selectivity of simple striate cells: properties and mechanism. J. Neurophysiol. 38, 1500–1523 (1975)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)

    Google Scholar 

  • Kelly, D.H.: Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69, 1340–1349 (1979)

    Google Scholar 

  • Kulikowski, J.J., King-Smith, P.E.: Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation. Vision Res. 13, 1455–1478 (1973)

    Google Scholar 

  • Levinson, E., Sekuler, R.: The independence of channels in human vision selective for direction of movement. J. Physiol. 250 347–366 (1975)

    Google Scholar 

  • Levinson, E., Sekuler, R.: A two-dimensional analysis of direction-specific adaptation. Vision Res. 20 103–107 (1980)

    Google Scholar 

  • Movshon, J.A.: The velocity tuning of single units in cat striate cortex. J. Physiol. 249, 445–468 (1975)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. 283, 53–77 (1978)

    Google Scholar 

  • Orban, G.A., Kennedy, H., Maes, H.: Response to movement of neurons in areas 17 and 18 of the cat: velocity sensitivity. J. Neurophysiol. 45, 1043–1058 (1981a)

    Google Scholar 

  • Orban, G.A., Kennedy, H., Maes, H.: Response to movement of neurons in areas 17 and 18 of the cat: direction selectivity. J. Neurophysiol. 45, 1059–1073 (1981b)

    Google Scholar 

  • Peichl, L., Wassle, H. Size, scatter and coverage of ganglion cell receptive field centers in the cat retina. J. Physiol. 291, 117–141 (1979)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik 13, 223–227 (1973)

    Google Scholar 

  • Quick, R.F.: A vector-magnitude model of contrast detection Kybernetick 16, 65–67 (1974)

    Google Scholar 

  • Rashbass, C.: The visibility of transient changes of luminance. J. Physiol. 210 165–186 (1970)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behavior in the fly. Q. Rev. Biophys. 9, 311–438 (1976)

    Google Scholar 

  • Reichardt, W., Varju, D.: Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z. Naturforsch. 14b, 674–689 (1959)

    Google Scholar 

  • Robson, J.G.: Receptive fields: neural representation of the spatial and intensive attributes of the visual image. In: Handbook of perception seeing. Vol. V, pp. 81–116. Carterette, E.C., Friedman, M.P. eds. New York: Academic Press 1975

    Google Scholar 

  • Sakitt, B., Barlow, H.B.: A model for the economical encoding of the visual image in cerebral cortex. Biol. Cybern. 43, 97–108 (1982)

    Google Scholar 

  • Schouten, J.F.: Subjective stroboscopy and a model of visual movement detectors. In: Models for the perception of speech and visual form. pp. 44–55. Wathen-Dunn, W., ed. Cambridge, MA: MIT Press 1967

    Google Scholar 

  • Sekuler, R., Ganz, L.: A new aftereffect of seen movement with a stabilized retinal image. Science 139, 419–420 (1963)

    Google Scholar 

  • Thorson, J.: Small signal analysis of a visual reflex in the locust. II. Frequency dependence. Kybernetik 3, 53–66 (1966)

    Google Scholar 

  • Tolhurst, D.J., Movshon, J.A.: Spatial and temporal contrast sensitivity of striate contical neurones. Nature 257, 674–675 (1975)

    Google Scholar 

  • Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proc. Roy. Soc. Lond. B 202, 409–416 (1978)

    Google Scholar 

  • vanSanten, J.P.H., Sperling, G.: A temporal covariance model for motion perception. Invest. Opthalmol. Vis. Sci. [Suppl.] 24, 277 (1983)

    Google Scholar 

  • Watson, A.B., Nachmias, J.: Patterns of temoral interaction in the detection of grating. Vision Res. 17, 893–902 (1977)

    Google Scholar 

  • Watson, A.B., Thompson, P.G., Murphy, B.J., Nachmias, J.: Summation and discrimination of gratings moving in opposite directions. Vision Res. 20 341–347 (1980)

    Google Scholar 

  • Watson, A.B.: Probability summation over time. Vision Res. 19, 515–522 (1979)

    Google Scholar 

  • Wilson, H.R., Bergen, J.R.: A four mechanism model for threshold spatial vision. Vision Res. 19, 19–32 (1979)

    Google Scholar 

  • Wilson, H.R.: Spatiotemporal characterization of a transient mechanism in the human visual system. Vision Res. 20, 433–452 (1980)

    Google Scholar 

  • Wilson, H.R., McFarlane, D.K., Phillips, G.C. Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Res. 23, 873–882 (1983)

    Google Scholar 

  • Wilson, H.R., Gelb, D.J.: A modified line element theory for spatial frequency and width discrimination. J. Opt. Soc. Am. A 1, 124–131 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, H.R. A model for direction selectivity in threshold motion perception. Biol. Cybern. 51, 213–222 (1985). https://doi.org/10.1007/BF00337147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337147

Keywords

Navigation