Skip to main content
Log in

Elementary pattern discrimination (behavioural experiments with the fly Musca domestica)

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of spontaneous pattern discrimination by the visual system of the fly. The indicator for discrimination and attractivity of a pattern is the yaw torque of a test fly. It is shown that the pattern discrimination process may be treated as a special (“degenerate”) case of figureground discrimination which has been described in detail in earlier publications. Decisive for the discrimination process is the fact that pattern discrimination by the fly is mediated by motion detectors which respond not only a pattern velocity but also to structural properties of pattern contrast. This is demonstrated by the transition from the existing twodimensional array of motion detectors to a continuous detector field which enabled us to calculate instantaneous detector responses to instationary pattern motion. The new approach, together with the special theory for figure-ground discrimination, is then applied to predict spontaneous discriminations of onedimensional periodic patterns. It is shown that predictions and experimental results are in good agreement. The second set of discrimination experiments deals with two dimensional dot patterns for which a quantitative theory is not yet available. However, it is shown that the attractivity of a dot pattern crucially depends on both the orientation and the direction of motion relative to the fly's eyes. If the contrast of a moving dot elicits an event in a motion detector which through the detector's time constant leads to an interference with an event received by a preceeding dot, the attractivity of the dot pattern is diminished. In the discussion relations are drawn between the concepts of pattern discrimination in honey bees and the theoretical aspects of discrimination put forward in this paper. It is briefly discussed why a two-dimensional motion detector theory might become the key for an understanding of pattern categories like “figural intensity” and “figural quality”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol London 178:477–504

    Google Scholar 

  • Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 561–621

    Google Scholar 

  • Bülthoff H, Götz KG (1979) Analogous motion illusion in man and fly. Nature 278:636–638

    Google Scholar 

  • Doorn AJ van, Koerderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 35:179–188

    Google Scholar 

  • Doorn AJ van, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:189–195

    Google Scholar 

  • Eckert H (1980) Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Pheonicia. J Comp Physiol 135:29–39

    Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurons. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2:15–28

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Google Scholar 

  • Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4:199–208

    Google Scholar 

  • Götz KG (1980) Visual guidance in Drosophila. In: Siddiqi O, Babu O, Hall L, Hall J (eds) Development and Neurobiology of Drosophila. Plenum Press, New York London Washington Boston, pp 391–407

    Google Scholar 

  • Guo A, Reichardt W (1986) Figure-ground discrimination by relative movement in the visual system of the fly. Part III. Experiments and simulations of complex figure-ground situations with movement detectors input elements to the figure-ground circuit. Biol Cybern (in preparation)

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524

    Google Scholar 

  • Hausen K (1981) Monokulare und binokulare Bewegungsauswertung in der Lobula plate der Fliege. Verh Dtsch Zool Ges 1981:49–70

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. Biol Cybern 46:67–79

    Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc R Soc Lond Ser B 219:211–216

    Google Scholar 

  • Hengstenberg R (1982) Common visual properties of giant vertical cells in the lobula plate of the blowfly Callphora. J Comp Physiol 149:179–193

    Google Scholar 

  • Hengstenberg R (1984) Roll-stabilization during flight of the blowfly's head and body by mechanical and visual cues. In: Varjú D, Schnitzler HU (eds) Localisation and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 121–134

    Google Scholar 

  • Hertz M (1929a) Die Organisation des optischen Feldes bei der Biene I. Z Vgl Physiol 8:693–748

    Google Scholar 

  • Hertz M (1929b) Die Organisation des optischen Feldes bei der Biene II. Z Vgl Physiol 11:107–145

    Google Scholar 

  • Kelly DH (1985) Visual processing of moving stimuli. J Opt Soc Am A2:216–224

    Google Scholar 

  • Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc London Ser B 298:227–264

    Google Scholar 

  • Mastebroek HAK, Zaagman WH, Lenting BPM (1980) Movement detection: performance of a wide-field element in the visual system of the blowfly. Vision Res 20:467–474

    Google Scholar 

  • McCann GD, MacGinitie GF (1965) Optomotor response studies in insect vision. Proc R Soc London Ser B 163:369–401

    Google Scholar 

  • Poggio T, Reichardt W (1973) Considerations on models of movement detection. Kybernetik 12:223–227

    Google Scholar 

  • Poggio T, Reichardt W (1976) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophys 9:377–438

    Google Scholar 

  • Poggio T, Reichardt W, Hausen K (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften 68:443–446

    Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z Naturforsch 12b:448–457

    Google Scholar 

  • Reichardt W (1961) Autocorrelation a principle for evaluation of sensory information by the central nerous system. In: Rosenblith WA (ed) Principles of sensory communications. Wiley, New York, pp 303–317

    Google Scholar 

  • Reichardt W (1973) Musterinduzierte Flugorientierung. Verhaltens-Versuche an der Fliege Musca domestica. Naturwissenschaften 60:122–138

    Google Scholar 

  • Reichardt W, Egelhaaf M (1986) (in preparation)

  • Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part. I. Experimental results. Biol Cybern 35:81–100

    Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z Naturforsch 14b:674–689

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry. Biol Cybern Suppl 46:1–30

    Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394

    Google Scholar 

  • Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A1:451–473

    Google Scholar 

  • Santen JPH, Sperling G (1985) Elaborated Reichardt detectors. J Opt Am A2:300–321

    Google Scholar 

  • Schnetter B (1972) Experiments on pattern discrimination in honey bees. In: Wehner R (ed) Information processing in visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 195–200

    Google Scholar 

  • Torre V, Poggio T (1978) Synaptic mechanism possibly underlying directional selectivity to motion. Proc R Soc London Ser B 202:409–416

    Google Scholar 

  • Wagner H (1985) Flight performance and visual control of flight of the free flying housefly (Musca domestica), I. Organization of the flight motor. II. Pursuit of targets. III. Interactions of wide field and target induced angular movement (submitted to Philos Trans R Soc London)

  • Wehner R (1981) Spatial vision in arthropods. In: Handbook of sensory physiology, vol VII/6c. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wehrhahn C (1985) Visual guidance during flight. In: Kerkut G, Gilbert L (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon Press, Oxford, pp 673–683

    Google Scholar 

  • Wehrhahn C, Reichardt W (1975) Visually induced height orientation of the fly Musca domestica. Biol Cybern 20:37–50

    Google Scholar 

  • Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybern 51:213–222

    Google Scholar 

  • Wolf E (1934) Das Verhalten der Bienen genenüber flimmernden Feldern und bewegten Objekten. Z Vgl Physiol 20:151–161

    Google Scholar 

  • Wolf E (1935) Der Einfluß von intermittierender Reìzung auf die optischen Reaktionen von Insekten. Naturwissenschaften 23:369–371

    Google Scholar 

  • Wolf E, Zerrahn-Wolf G (1935) The effect of light intensity, area, and flicker frequency on the visual reaction of the honey bee. J Gen Physiol 18:853–863

    Google Scholar 

  • Zerrahn G (1933) Formdressur und Formunterscheidung bei der Honigbiene. Z Vgl Physiol 20:117–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichardt, W., Guo, Ak. Elementary pattern discrimination (behavioural experiments with the fly Musca domestica). Biol. Cybern. 53, 285–306 (1986). https://doi.org/10.1007/BF00336562

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336562

Keywords

Navigation