Skip to main content
Log in

A model for flicker noise in nerve membranes

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Flicker noise, or noise with a spectral density which varies inversely with frequency over a frequency range of several decades, is a well known phenomenon in nerve membrane. We suggest that it is unlikely that this current flicker noise is produced by long time constant processes, and propose a mechanism involving interactions between adjacent ionic channels. We show analytically that such a hypothetical interaction can generate flicker noise in a simplified, one dimensional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H.: Conduction velocity and gating current in the squid giant axon. Proc. R. Soc. Lond. B 189, 81–86 (1975)

    Google Scholar 

  • Armstrong, C. M.: Interaction of tetraethylammonium ion derivatives with the potassium channel of giant axons. J. Gen. Physiol. 58, 413–437 (1971)

    Google Scholar 

  • Bezanilla, F., Armstrong, C. M.: Negative conductance caused by entry of sodium and caesium ions into the K channels of squid axons. J. Gen. Physiol. 60, 588–600 (1972)

    Google Scholar 

  • del Castillo, J., Suckling, E. E.: Possible quantal nature of subthreshold responses at single node of Ranvier. Fed. Proc. 16, 29 (1957)

    Google Scholar 

  • Çinlar, E.: Superposition of point processes. In: Stochastic point processes: Statistical analysis, theory and applications. Ed.: Lewis, P.A.W. New York: Wiley 1972

    Google Scholar 

  • Clay, J. R., Schlesinger, M. F.: Theoretical model of the ionic mechanism of 1/f noise in nerve membrane. Biophys. J. 16, 121–136 (1976)

    Google Scholar 

  • Colquhoun, D., Henderson, R., Ritchie J. M.: The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J. Physiol. (Lond.) 227, 95 (1972)

    Google Scholar 

  • Conti, F., Wanke, E.: Channel noise in nerve membranes and lipid bilayers. Quart. Rev. Biophys. 8, 451–506 (1975)

    Google Scholar 

  • Cox, D. R.: Renewal theory. London: Methuen 1962

    Google Scholar 

  • Cox, D. R., Lewis, P. A. W.: The statistical analysis of series of events. London: Methuen 1966

    Google Scholar 

  • Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve terminals. J. Physiol. 117, 109–128 (1952)

    Google Scholar 

  • Fienberg, S.E.: Stochastic models for single neurone firing trains: a survey. Biometrics 30, 399–427 (1974)

    Google Scholar 

  • Guttman, R.: Effect of low sodium, tetrodotoxin, and temperature variation upon excitation. J. Gen. Physiol. 51, 621–634 (1968)

    Google Scholar 

  • Heiden, C.: Power spectrum of stochastic pulse sequences with correlation between the pulse parameters. Phys. Rev. 188, 319–326 (1969)

    Google Scholar 

  • Hill, T. L., Chen, Y-D.: On the theory of ion transport across the nerve membrane, II. Potassium ion kinetics and co-operativity (with x=4). Proc. Nat. Acad. Sci. USA 68, 1711–1715 (1971)

    Google Scholar 

  • Hille, B.: Pharmacological modifications of the sodium channel of frog nerve. J. Gen. Physiol. 51, 199–219 (1968)

    Google Scholar 

  • Hille, B.: Ionic channels in nerve membrane. Progr. Biophys. Molec. Biol. 21, 1–32 (1970)

    Google Scholar 

  • Hille, B.: Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61, 669–686 (1973)

    Google Scholar 

  • Hodgkin, A.: The optimum density of sodium channels in an unmyclinated nerve. Phil. Trans. R. Soc. Lond. B 270, 297–300 (1975)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952a)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952b)

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. 128, 28–60 (1955a)

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: The potassium permeability of a giant nerve fibre. J. Physiol. 128, 61–88 (1955b)

    Google Scholar 

  • Holden, A. V.: Models of the stochastic activity of neurones. Lecture notes in Biomathematics. Vol. 12. Berlin-Heidelberg-New York: Springer 1976a

    Google Scholar 

  • Holden, A. V.: Flicker noise and structural changes in nerve membrane. J. Theor. Biol. 57, 243–246 (1976b)

    Google Scholar 

  • Keynes, R. D., Rojas, E.: Kinetics and steady state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol. 239, 393–434 (1974)

    Google Scholar 

  • Lukes, T.: Statistical properties of sequences of stochastic pulses. Proc. Phys. Soc. 18, 156–168 (1961)

    Google Scholar 

  • Luttgau, H. C.: Sprunghafte Schwankungen unterschwelliger Potentiale an markhaltigen Nervenfasern. Z. Naturforschung 136, 692–693 (1958)

    Google Scholar 

  • Moore, J. W., Narahashi, T., Shaw, T. I.: An upper limit to the number of sodium channels in nerve membrane. J. Physiol. 188, 99–105 (1967)

    Google Scholar 

  • Nelsen, D. E.: Calculation of power density spectra for a class of randomly jittered waveforms. Res. Lab. Electronics, M.I.T.Q.P.R. 74, 168–179 (1964)

    Google Scholar 

  • Neumcke, B.: 1/f membrane noise generated by diffusion process in unstirred solution layers. Biophys. Struct. Mechanism 1, 295–309 (1975)

    Google Scholar 

  • Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928)

    Google Scholar 

  • Poussart, D. J. M.: Membrane current noise in lobster axon under voltage clamp. Biophys. J. 11, 212–234 (1971)

    Google Scholar 

  • Schick, K. L.: Power spectra of pulse sequences and implications for membrane fluctuations. Acta Biotheoretica 23, 1–17 (1974)

    Google Scholar 

  • Srinivasan, S. K.: Stochastic point processes and their applications. London: Griffin 1974

    Google Scholar 

  • Stein, R. B., Pearson, K. G.: Predicted amplitude and form of action potentials recorded from unmyelinated nerve fibres. J. theoret. Biol. 32, 539–558 (1971)

    Google Scholar 

  • Tasaki, I.: Nerve excitation—a macro molecular approach. Springfield: C. C. Thomas 1968

    Google Scholar 

  • Woodbury, J. W.: Eyring rate theory model of the current-voltage relationships of ion channels in excitable membranes. Advances in Chemical Physics 21: Chemical Dynamics. pp. 601–619. Eds.: Hirschfelder, J. O., Henderson, D. Wiley-Interscience: New York 1971

    Google Scholar 

  • Ussing, H. H.: Transport of ions across cellular membranes. Physiol. Rev. 29, 127–155 (1949)

    Google Scholar 

  • van den Berg, R. J., de Goede, J., Verveen, A. A.: Conductance fluctuations in Ranvier nodes. Pflügers Arch. ges. Physiol. 360, 17–23 (1975)

    Google Scholar 

  • Verveen, A. A., DeFelice, L. J.: Membrane noise. Progr. Biophys. Mol. Biol. 28, 189–265 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, A.V., Rubio, J.E. A model for flicker noise in nerve membranes. Biol. Cybernetics 24, 227–236 (1976). https://doi.org/10.1007/BF00335983

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335983

Keywords

Navigation