Skip to main content
Log in

Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from purified P. hybrida mitochondria, specific initiation of DNA synthesis could only be observed starting within two framents, oriA and oriB. When DNA synthesis incubations were performed with DNA templates consisting of both the A and B origins in the same plasmid in complementary strands, DNA synthesis first initiates in the A-origin, proceeds in the direction of the B-origin after which replication is also initiated in the B-origin. Based on these observations, a replication model for the P. hybrida mitochondrial genome is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker TA, Sekimizu K, Funnell BE, Kornberg A (1986) Cell 45:53–64

    Google Scholar 

  • Baldacci G, Cherif-Zahar B, Bernardi G (1984) EMBO J 3:2115–2120

    Google Scholar 

  • Birnboim HC, Doly J, (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyrit KA, Hicks JB (1982) Cold Spring Harbor Symp Quant Biol 47:1165–1173

    Google Scholar 

  • Carrillo N, Bogorad L (1988) Nucleic Acid Res 16:5603–5621

    Google Scholar 

  • Chang D, Hauswith WW, Clayton DA (1985) EMBO J 4:1559–1567

    Google Scholar 

  • Clayton DA (1982) Cell 28:693–705

    Google Scholar 

  • Echeverria M, Martin MT, Ricard B, Litvak S (1986) Plant Mol Biol 6:417–427

    Google Scholar 

  • Folkerts O, Hanson MR (1989) Nucleic Acids Res 17:7345–7357

    Google Scholar 

  • Fuller RS, Kaguni JM, Kornberg A (1981) Proc Natl Acad Sci USA 78:7370–7374

    Google Scholar 

  • Gold B, Carillo N, Tewari KK; Bogorad L (1987) Proc Natl Acad Sci USA 84:194–198

    Google Scholar 

  • Haas JM de, Boot KJM, Haring M, Kool AJ, Nijkamp HJJ (1986) Mol Gen Genet 202:48–54

    Google Scholar 

  • Haas JM de, Kool AJ, Overbeeke N, van Brug W, Nijkamp HJJ (1987) Curr Genet 12:377–386

    Google Scholar 

  • Kool AJ, de Haas JM, Mol JNM, van Marrewijk GAM (1984) Theor Appl Genet 69:223–233

    Google Scholar 

  • Kornberg A (1980) In: Kornberg A (ed) DNA replication. WH Freeman, Plenum Press, San Francisco, pp 379

    Google Scholar 

  • Kornberg A (1982) In: Kornberg A (ed) Supplement to DNA replication. WH Freeman Plenum Press, San Francisco, pp 89

    Google Scholar 

  • Li JL, Kelly TJ (1984) Proc Natl Acad Sci USA 81:6973–6977

    Google Scholar 

  • Loon APGM van, Eijk E van, Grivell LA (1983) EMBO J2:1765–1770

    Google Scholar 

  • Lowry OH, Rosenbach NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • Maniatis, T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor laboratory, Cold Spring harbor, New York

    Google Scholar 

  • Marunouchi Y, Matsumato K, Hosoya K, Okabayashi K (1987) Mol Gen Genet 206:60–65

    Google Scholar 

  • Messing J, Vierra J (1982) Gene 19:269–276

    Google Scholar 

  • Polzkill T, Oliver J, Newton C (1986) Nucleic Acids Res 14:6247–6263

    Google Scholar 

  • Pring DR, Lonsdale DM (1985) Int Rev Cytol 97:1–46

    Google Scholar 

  • Sinha P, Chang V, Tye BK (1986) J Mol Biol 192:805–814

    Google Scholar 

  • Sanger F, Coulson AR, Barrell BY, Smith AJH, Roe BA (1980) J Mol Biol 143:161–178

    Google Scholar 

  • Stillman BW (1983) cell 35:7–9

    Google Scholar 

  • Stinchcomb DT, Selker E, Davis RW (1980) Proc Natl Acad Sci USA 77:4559–4563

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Wahleithner JA, Wolstenholme DR (1988) Curr Genet 14:163–170

    Google Scholar 

  • Wallace DC (1982) Microbiol Reviews 16:208–240

    Google Scholar 

  • Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Yasufumi M, Bullock P, Hurwitz J (1987) Proc Nat, Acad Sci USA 84:1834–1838

    Google Scholar 

  • Wong TW, Clayton DA, (1985) Cell 42:951–958

    Google Scholar 

  • Wu M, Lou JK, Chang DY, Chang CH, Nie ZQ (1986) Proc Natl Acad Sci USA 83:6756–6765

    Google Scholar 

  • Young EG, Hanson MR, Dierks PM (1986) Nucleic Acid Res 14:7995–8006

    Google Scholar 

  • Zamaroczy M de, Faugeron-Fonty G, Baldacci G, Goursot R, Berardi G (1984a) Gene 32:439–457

    Google Scholar 

  • Zamaroczy M de, Faugeron-Fonty, G, Bernardi G (1984b) Gene 21:193–202

    Google Scholar 

  • Zyskind JW, Smith DW (1986) Cell 46:489–490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. J. Leaver

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Haas, J.M., Hille, J., Kors, F. et al. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins. Curr Genet 20, 503–513 (1991). https://doi.org/10.1007/BF00334779

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334779

Key words

Navigation