Skip to main content
Log in

The Rhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed with nifA and nifB

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Sequencing of the Rhizobium meliloti DNA region downstream of nifA revealed the existence of nifB, fdxN and ORF3. The molecular weight of the fdxN protein (Mr 6830) and the distribution of cysteine residues in its deduced amino acid sequence is typical for low molecular weight bacterial ferredoxins. Interposon insertion and plasmid integration mutagenesis demonstrated that FdxN is essential for nitrogen fixation in R. meliloti, whereas the predicted translation product of ORF3 (Mr 8708) is not necessary for this process. In contrast, ferredoxin-like proteins, which are encoded by nifB-associated genes, are not required for nitrogen fixation in all other organisms analysed so far. Plasmid integration mutagenesis additionally revealed that nifA, nifB and fdxN form one transcriptional unit. This result was confirmed by complementation analysis of polar interposon insertion mutants of nifA, nifB and fdxN and by complementation of a non-polar nifA deletion mutant. A DNA sequence resembling a typical nif consensus promoter, which is preceded by two putative NifA-binding sites, is located in front of nifB. This nifB promoter can be activated in Escherichia coli by the nifA gene product of Klebsiella pneumoniae to the same level as that of the R. meliloti nifH promoter. In contrast, R. meliloti NifA stimulates the nifH promoter more efficiently than the nifB promoter. This low-level activation of the nifB promoter may be the reason why transcription of nifB and fdxN is initiated primarily at a promoter in front of nifA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar OM, Kapp D, Pühler A (1985) Characterization of a Rhizobium meliloti fixation gene (fixF) located near the common nodulation region. J Bacteriol 164:245–254

    Google Scholar 

  • Aguilar OM, Reiländer H, Arnold W, Pühler A (1987) Rhizobium meliloti nifN (fixF) gene is part of an operon regulated by a nifA-dependent promoter and codes for a polypeptide homologous to the nifK gene product. J Bacteriol 169:5393–5400

    Google Scholar 

  • Bánfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha, I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid in R. meliloti. Mol Gen Genet 184:318–325

    Google Scholar 

  • Batut J, Terzaghi B, Ghérardi M, Huguet M, Terzaghi E, Garnerone AM, Boistard P, Huguet T (1985) Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more then 200 kilobases from the nod-nif-region. Mol Gen Genet 199:232–239

    Google Scholar 

  • Better M, Lewis B, Corbin D, Ditta G, Helinski DR (1983) Structural relationships among Rhizobium meliloti symbiotic promoters. Cell 35:479–485

    Google Scholar 

  • Beynon JL, Williams MK, Cannon FC (1988) Expression and functional analysis of the Rhizobium meliloti nifA gene. EMBO J 7:7–14

    Google Scholar 

  • Buikema WJ, Szeto WW, Lemley PV, Orme-Johnson WH, Ausubel FM (1985) Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K. pneumoniae. Nucleic Acids Res 13:4539–4555

    Google Scholar 

  • Buikema WJ, Klingensmith JA, Gibbons SL, Ausubel FM (1987) Conservation of structure and location of Rhizobium meliloti and Klebsiella pneumoniae nifB genes. J Bacteriol 169:1120–1126

    Google Scholar 

  • David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D (1988) Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671–683

    Google Scholar 

  • Deininger PL (1983) Random subcloning of sonicated DNA: Application to shotgun DNA sequence analysis. Anal Biochem 129:216–223

    Google Scholar 

  • Earl CD, Ronson CW, Ausubel FM (1987) Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol 169:1127–1136

    Google Scholar 

  • Ebeling S, Noti JD, Hennecke H (1988) Identification of a new Bradyrhizobium japonicum gene (frxA) encoding a ferredoxin-like protein. J Bacteriol 170:1999–2001

    Google Scholar 

  • Grönger P, Manian SS, Reiländer H, O'Connell M, Priefer UB, Pühler A (1987) Organization and partial sequence of a DNA region of the Rhizobium leguminosarum symbiotic plasmid pRL6JI containing the genes fixABC, nifA, nifB and a novel open reading frame. Nucleic Acids Res 15:31–49

    Google Scholar 

  • Hirsch PR, Wang CL, Woodward MJ (1986) Construction of a Tn5 derivative determining resistance to gentamicin and spectinomycin using a fragment cloned from R1033. Gene 48:203–209

    Google Scholar 

  • Hynes FM, Simon R, Müller P, Niehaus K, Labes M, Pühler A (1986) The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa. Mol Gen Genet 202:356–362

    Google Scholar 

  • Imperial J, Ugalde RA, Shah VK, Brill WJ (1984) Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol 158:187–194

    Google Scholar 

  • Joerger RD, Bishop PE (1988) Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol 170:1475–1487

    Google Scholar 

  • Kim CH, Helinski DR, Ditta G (1986) Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti. Gene 50:141–148

    Google Scholar 

  • Klipp W, Masepohl B, Pühler A (1988) Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: Duplication of a nifA-nifB region. J Bacteriol 170:693–699

    Google Scholar 

  • Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: Identification of nodulation genes. Mol Gen Genet 193:445–452

    Google Scholar 

  • MacNeil D (1981) General method, using Mu-Mud1 dilysogens, to determine the direction of transcription of and generate deletions in the glnA region of Escherichia coli. J Bacteriol 146:260–268

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Martinez HM (1983) An efficient method for finding repeats in molecular sequences. Nucleic Acids Res 11:4629–4634

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Springer Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mulligan ME, Buikema WJ, Haselkorn R (1988) Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium Anabaena sp. strain PCC 7120 and Rhizobium meliloti. J Bacteriol 170:4406–4410

    Google Scholar 

  • Nieva-Gomez D, Roberts GP, Klevickis S, Brill WJ (1980) Electron transport to nitrogenase in Klebsiella pneumoniae. Proc Natl Acad Sci USA 77:2555–2558

    Google Scholar 

  • Priefer UB, Simon R, Pühler A (1985) Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J Bacteriol 163:324–330

    Google Scholar 

  • Pühler A, Klipp W, Weber G (1983) Mapping and regulation of the structural genes nifK, nifD, and nifH of Rhizobium meliloti. In: Pühler A (ed) Molecular genetics of the bacteria-plant interactions. Springer, Berlin Heidelberg New York, pp 69–78

    Google Scholar 

  • Riedel GE, Brown SE, Ausubel FM (1983) Nitrogen fixation by Klebsiella pneumoniae is inhibited by certain multicopy hybrid nif plasmids. J Bacteriol 153:45–56

    Google Scholar 

  • Rosenberg C, Boistard P, Dénarié J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet 184:326–333

    Google Scholar 

  • Rossen L, Ma QS, Mudd EA, Johnston AWB, Downie JA (1984) Identification and DNA sequence of fixZ, a nifB-like gene from Rhizobium leguminosarum. Nucleic Acids Res 12:7123–7134

    Google Scholar 

  • Ruvkun GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA 77:191–195

    Google Scholar 

  • Ruvkun GB, Sundaresan V, Ausubel FM (1982) Directed transposon Tn5-mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29: 551–559

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schöffl F, Arnold W, Pühler A, Altenbuchner J, Schmitt R (1981) The tetracycline resistance transposons Tn1721 and Tn1771 have three 38-base-pair repeats and generate five-base-pair direct repeats. Mol Gen Genet 181:87–94

    Google Scholar 

  • Shapira SK, Chou J, Richaud FV, Casabadan MJ (1983) New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of β-galactosidase. Gene 25:71–82

    Google Scholar 

  • Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791

    Google Scholar 

  • Sobel E, Martinez HM (1986) A multiple sequence alignment program. Nucleic Acids Res 14:363–374

    Google Scholar 

  • St John RT, Johnston MH, Seidman C, Garfinkel D, Gordon JK, Shah VK, Brill WJ (1975) Biochemistry and genetics of Klebsiella pneumoniae mutant strains unable to fix N2. J Bacteriol 121:759–765

    Google Scholar 

  • Sundaresan V, Jones JDG, Ow DW, Ausubel FM (1983) Klebsiella pneumoniae nifA product activates the Rhizobium meliloti nitrogenase promoter. Nature 301:728–732

    Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V, Ausubel FM (1984) A Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043

    Google Scholar 

  • Weber G, Reiländer H, Pühler A (1985) Mapping and expression of a regulatory nitrogen fixation gene (fixD) of Rhizobium meliloti. EMBO J 4:2751–2756

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Yates MG, O'Donnell MJ, Lowe DJ, Bothe H (1978) Ferredoxins from nitrogen-fixing bacteria. Eur J Biochem 85:291–299

    Google Scholar 

  • Yoch DC, Arnon DI (1975) Comparison of two ferredoxins from Rhodospirillum rubrum as electron carriers for the native nitrogenase. J Bacteriol 121:743–745

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Schell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klipp, W., Reiländer, H., Schlüter, A. et al. The Rhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed with nifA and nifB. Mol Gen Genet 216, 293–302 (1989). https://doi.org/10.1007/BF00334368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334368

Key words

Navigation