Skip to main content
Log in

Structural and functional homology between the α and β subunits of the nitrogenase MoFe protein as revealed by sequencing the Rhizobium japonicum nifK gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Together with the nifK gene presented here all three genes encoding the polypeptides of the nitrogenase complex of Rhizobium japonicum are now sequenced. This allows a comprehensive comparison between them. The R. japonicum nifK gene has 518 codons predicting a MoFe protein β subunit with a calculated mol.wt. of 57428. Interspecies comparisons with one complete and two partial nifK sequences from other N2 fixing bacteria reveal conserved regions. The β subunit has three strongly conserved cysteine residues (at positions 69, 94, and 152). They are located in an area sharing amino acid sequence homology with the α subunit (the nifD gene product), which in turn has analogous cysteines at positions 67, 93, and 159. This may reflect the structural requirements of the α and β polypeptides for the binding of [4Fe:4S] clusters, and may indicate that nifD and nifK have evolved from a common ancestral gene. The comparative DNA sequence analysis also reveals structures required for nif gene expression in R. japonicum: (1) an apparent ribosome binding site with the consensus sequence 5′-uUgAaGGA-3′ is located six to eight nucleotides upstream of the AUG initiator codon; (2) nifK (being the promoter-distal gene of the nifDK operon) is followed by a potential ‘stem-and-loop’ transcriptional terminator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerswald EA, Ludwig G, Schaller H (1980) Structural analysis of Tn5. Cold Spring Harbor Symp Quant Biol 45:107–113

    Google Scholar 

  • Betancourt-de-Alvarez MG (1983) Molecular genetic studies of the nifY gene in Klebsiella pneumoniae, M Phil Thesis, University of Sussex, Brighton, UK

  • Burgess BK (1984) Structure and reactivity of nitrogenase—an overview. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff/Junk Publ. The Hague, p 103–114

    Google Scholar 

  • Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276

    Google Scholar 

  • Fischer HM, Hennecke H (1984) Linkage map of the Rhizobium japonicum nifH and nifDK operons encoding the polypeptides of the nitrogenase enzyme complex. Mol Gen Genet 196:537–540

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonnen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Google Scholar 

  • Fuhrmann M, Hennecke H (1982) Coding properties of cloned nitrogenase structural genes from Rhizobium japonicum. Mol Gen Genet 187:419–425

    Google Scholar 

  • Fuhrmann M, Hennecke H (1984) Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011

    Google Scholar 

  • Gray CP, Sommer R, Polke C, Beck E, Schaller H (1978) Structure of the origin of DNA replication of bacteriophage fd. Proc Natl Acad Sci USA 75:50–53

    Google Scholar 

  • Hahn M, Hennecke H (1984) Localized mutagenesis in Rhizobium japonicum. Mol Gen Genet 193:46–52

    Google Scholar 

  • Hahn M, Meyer L, Studer D, Regensburger B, Hennecke H (1984) Insertion and deletion mutations within the nif region of Rhizobium japonicum. Plant Mol Biol 3:159–168

    Google Scholar 

  • Hase T, Wakabayashi S, Nakano T, Zumft WG, Matsubara H (1984) Structural homologies between the amino acid sequence of Clostridium pasteurianum MoFe protein and the DNA sequences of nifD and K genes of phylogenetically diverse bacteria. FEBS Lett 166:39–43

    Google Scholar 

  • Haselkorn R, Lammers PJ, Rice D, Robinson SJ (1984) Organisation and transcription of nitrogenase genes in the cyanobacterium Anabaena. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff/Junk Publ. The Hague, p 653–659

    Google Scholar 

  • Hausinger RP, Howard JB (1982) The amino acid sequence of the nitrogenase iron protein from Azotobacter vinelandii. J Biol Chem 257:2483–2490

    Google Scholar 

  • Hausinger RP, Howard JB (1984) Fe protein Fe:S ligands. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff/Junk Publ. The Hague, p 150

    Google Scholar 

  • Hennecke H (1981) Recombinant plasmids carrying nitrogen fixation genes from Rhizobium japonicum. Nature 291:354–355

    Google Scholar 

  • Hennecke H, Fuhrmann M (1983) Biochemical genetics of nitrogen fixation in Rhizobium. In: Müller A, Newton WE (eds) Nitrogen fixation. The chemical-biochemical-genetic interface. Plenum Press, New York London, p 135–148

    Google Scholar 

  • Herdmann M, Janvier M, Waterbury JB, Rippka R, Stanier RY, Mandel M (1979) Genome size of cyanobacteria. J Gen Microbiol 111:63–71

    Google Scholar 

  • Holmes WM, Platt T, Rosenberg M (1983) Termination of transcription in E. coli. Cell 32:1029–1032

    Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Google Scholar 

  • Kaluza K, Hennecke H (1984) Fine structure analysis of the nifDK operon encoding the α and β subunits of dinitrogenase from Rhizobium japonicum. Mol Gen Genet 196:35–42

    Google Scholar 

  • Kennedy C, Eady RR, Kondorosi E, Rekosh DK (1976) The molybdenum-iron protein of Klebsiella pneumoniae nitrogenase. Biochem J 155:383–389

    Google Scholar 

  • Kennedy C, Cannon F, Cannon M, Dixon R, Hill S, Jensen J, Kumar S, McLean P, Merrick M, Robson R, Postgate JR (1981) Recent advances in the genetics and regulation of nitrogen fixation. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation Australian Academy of Science, Canberra, p 146–156

    Google Scholar 

  • Lammers PJ, Haselkorn R (1983) Sequence of the nifD gene coding for the α subunit of dinitrogenase from the cyanobacterium Anabaena. Proc Natl Acad Sci USA 80:4723–4727

    Google Scholar 

  • Lowe DJ, Smith BE, Eady RR (1980) The structure and mechanism of nitrogenase. In: Subba-Rao NS (ed) Recent advances in biological nitrogen fixation. Edward Arnold Publ., London, p 34–87

    Google Scholar 

  • Lundell DJ, Howard JB (1981) Isolation and sequences of the cysteinyl tryptic peptides from the MoFe protein of Azotobacter vinelandii nitrogenase. J Biol Chem 256:6385–6391

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavage. Meth Enzymol 65:449–561

    Google Scholar 

  • Mazur BJ, Chui CF (1982) Sequence of the gene coding for the β-subunit of dinitrogenase from the blue-green alga Anabaena. Proc Natl Acad Sci USA 79:6782–6786

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Meth Enzymol 101:20–78

    Google Scholar 

  • Mevarech M, Rice D, Haselkorn R (1980) Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci USA 77:6476–6480

    Google Scholar 

  • Neve RL, West RW, Rodriguez RL (1979) Eukaryotic DNA fragments which act as promoters for a plasmid gene. Nature 277:324–325

    Google Scholar 

  • Pühler A, Klipp W (1981) Fine-structure analysis of the gene region for N2-fixation (nif) of Klebsiella pneumoniae. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Heidelberg, p 276–286

    Google Scholar 

  • Roberts GP, Brill WJ (1981) Genetics and regulation of nitrogen fixation. Annu Rev Microbiol 35:207–235

    Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Google Scholar 

  • Ruvkun GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA 77:191–195

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA-sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Matrices for detecting distant relationships. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5. Nat Biomed Res Round, Washington, p 353–358

    Google Scholar 

  • Scott DB, Hennecke H, Lim ST (1979) The biosynthesis of nitrogenase MoFe protein polypeptides in free-living cultures of Rhizobium japonicum. Biochim Biophys Acta 565:365–378

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1981) Biological nitrogen fixation: primary structure of the Klebsiella pneumoniae nifH and nifD genes. J Mol Appl Genet 1:71–81

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1983a) Nitrogenase structural genes are unlinked in the nonlegume symbiont Parasponia Rhizobium. DNA 2:141–148

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1983b) Biological nitrogen fixation: primary structure of the Rhizobium trifolii iron protein gene. DNA 2:149–155

    Google Scholar 

  • Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Google Scholar 

  • Smith BE (1983) Reactions and physicochemical properties of the nitrogenase MoFe proteins. In: Müller A, Newton WE (eds) Nitrogen fixation. The Chemical-biochemical-genetic interface. Plenum Press, New York London, p 23–62

    Google Scholar 

  • Stormo GD, Schneider TD, Gold LM (1982) Characterization of translational initiation sites in E. coli. Nucl Acid Res 10:2971–2996

    Google Scholar 

  • Sundaresan V, Ausubel FM (1981) Nucleotide sequence of the gene coding for the nitrogenase iron protein from Klebsiella pneumoniae. J Biol Chem 256:2808–2812

    Google Scholar 

  • Tanaka M, Haniu M, Yasunobu T, Mortenson L (1977) The amino acid sequence of Clostridium pasteurianum iron protein, a component of nitrogenase. J Biol Chem 252:7093–7100

    Google Scholar 

  • Tinoco J, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature 246:40–41

    Google Scholar 

  • Török I, Kondorosi A (1981) Nucleotide sequence of the R. meliloti nitrogenase reductase (nifH) gene. Nucl Acid Res 9:5711–5723

    Google Scholar 

  • Yamane T, Weininger MS, Mortenson LE, Rossmann MG (1982) Molecular symmetry of the MoFe protein of nitrogenase. J Biol Chem 257:1221–1223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thöny, B., Kaluza, K. & Hennecke, H. Structural and functional homology between the α and β subunits of the nitrogenase MoFe protein as revealed by sequencing the Rhizobium japonicum nifK gene. Mol Gen Genet 198, 441–448 (1985). https://doi.org/10.1007/BF00332937

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332937

Keywords

Navigation