Skip to main content
Log in

Direct response of Bradyrhizobium japonicum nifA-mediated nif gene regulation to cellular oxygen status

  • Short Communications
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The nifA genes of Klebsiella pneumoniae and Bradyrhizobium japonicum were constitutively expressed from the pBR329-derived chloramphenicol resistance promoter. The inserts of these nifA plasmid constructs were devoid of any other intact flanking genes. The nifA genes thus expressed led to a marked activation of a B. japonicum nifD-lacZ fusion under microaerobic conditions. Under aerobic growth conditions, however, activation was mediated only by the K. pneumoniae nifA gene but not by the B. japonicum nifA gene. This selective effect was observed in both the Escherichia coli as well as the B. japonicum backgrounds. Several lines of evidence suggest that in these experiments oxygen adversely affects B. japonicum nifA-dependent nif gene regulation at the post-transcriptional level, probably even at the post-translational level, and that this effect does not require a nifL-like gene. Models are proposed in which oxygen inhibits the B. japonicum NifA protein either directly or indirectly via other cellular components involved in general protein oxidation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Acuña G, Alvarez-Morales A, Hahn M, Hennecke H (1987) A vector for the site-directed, genomic integration of foreign DNA into soybean root-nodule bacteria. Plant Mol Biol 9:41–50

    Google Scholar 

  • Ahombo G, Willison JC, Vignais PM (1987) The nifHDK genes are contiguous with a nifA-like regulatory gene in Rhodobacter capsulatus. Mol Gen Genet 205:442–445

    Google Scholar 

  • Alvarez-Morales A, Hennecke H (1985) Expression of Rhizobium japonicum nifH and nifDK operons can be activated by the Klebsiella pneumoniae NifA protein but not by the product of ntrC. Mol Gen Genet 199:306–314

    Google Scholar 

  • Alvarez-Morales A, Betancourt-Alvarez M, Kaluza K, Hennecke H (1986) Activation of Bradyrhizobium japonicum nifH and nifDK operons is dependent on promoter-upstream DNA sequences. Nucleic Acids Res 14:4207–4227

    Google Scholar 

  • Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35:443–478

    Google Scholar 

  • Ausubel FM (1984) Regulation of nitrogen fixation genes. Cell 37:5–6

    Google Scholar 

  • Ausubel FM, Buikema WJ, Earl CD, Klingensmith JA, Nixon BT, Szeto WW (1985) Organization and regulation of Rhizobium meliloti and Parasponia Bradyrhizobium nitrogen fixation genes. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, Dordrecht, pp 165–171

    Google Scholar 

  • Beynon J, Cannon M, Buchanan-Wollaston V, Cannon F (1983) The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34:665–671

    Google Scholar 

  • de Bruijn FJ, Ausubel FM (1983) The cloning and characterization of the glnF (ntrA) gene of Klebsiella pneumoniae: Role of glnF (ntrA) in the regulation of nitrogen fixation (nif) and other nitrogen assimilation genes. Mol Gen Genet 192:342–353

    Google Scholar 

  • Buchanan-Wollaston V, Cannon MC, Beynon JL, Cannon FC (1981) Role of the nifA gene product in the regulation of nif expression in Klebsiella pneumoniae. Nature 294:776–778

    Google Scholar 

  • Buck M, Miller S, Drummond M, Dixon R (1986) Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 320:374–378

    Google Scholar 

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-Galactosidase gene fusions for analyzing gene expression in E. coli and yeast. Methods Enzymol 100:293–308

    Google Scholar 

  • Covarrubias L, Bolivar F (1982) Construction and characterization of amplifiable multicopy DNA cloning vehicles. VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482 base-pair inverted duplication. Gene 17:79–89

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski D (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Dixon R (1984) The genetic complexity of nitrogen fixation. J Gen Microbiol 130:2745–2755

    Google Scholar 

  • Dixon R, Kennedy C, Kondorosi A, Krishnapillai V, Merrick M (1977) Complementation analysis of Klebsiella pneumoniae mutants defective in nitrogen fixation. Mol Gen Genet 157:189–198

    Google Scholar 

  • Drummond M, Clements J, Merrick M, Dixon R (1983) Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae. Nature 301:302–307

    Google Scholar 

  • Eady RR, Smith BE, Cook KA, Postgate JR (1978) Nitrogenase synthesis in Klebsiella pneumoniae: Comparison of ammonium and oxygen regulation. J Gen Microbiol 104:277–285

    Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Google Scholar 

  • Fischer H-M, Alvarez-Morales A, Hennecke H (1986) The pleiotropic nature of symbiotic regulatory mutants: Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis. EMBO J 5:1165–1173

    Google Scholar 

  • Gussin GN, Ronson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591

    Google Scholar 

  • Hennecke H (1981) Regulation of nitrogenase synthesis in free-living and symbiotic N2-fixing bacteria: A comparison. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin Heidelberg New York, pp 309–316

    Google Scholar 

  • Hennecke H, Shanmugam KT (1979) Temperature control of nitrogen fixation in Klebsiella pneumoniae. Arch Microbiol 123:259–265

    Google Scholar 

  • Hennecke H, Fischer H-M, Ebeling S, Gubler M, Thöny B, Göttfert M, Lamb J, Hahn M, Ramseier T, Regensburger B, Alvarez-Morales A, Studer D (1987) Nif, fix and nod gene clusters in Bradyrhizobium japonicum, and nifA-mediated control of symbiotic nitrogen fixation. In: Verma DPS, Brisson N (eds) Molecular genetics of plant-microbe interactions. Martinus Nijhoff, Dordrecht, pp 191–196

    Google Scholar 

  • Hill S, Kennedy C, Kavanagh E, Goldberg RB, Hanau R (1981) Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in Klebsiella pneumoniae. Nature 290:424–426

    Google Scholar 

  • Hirschmann J, Wong PJ, Sei K, Keener J, Kustu S (1985) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: Evidence that the ntrA product is a sigma factor. Proc Natl Acad Sci USA 82:7525–7529

    Google Scholar 

  • Holmgren A (1986) Thioredoxin and glutaredoxin systems: An overview. In: Holmgren A, Brändén C-I, Jörnvall H, Sjöberg B-M (eds) Thioredoxin and glutaredoxin systems: Structure and function. Raven Press, New York, pp 1–9

    Google Scholar 

  • Hunt TP, Magasanik B (1985) Transcription of glnA by purified Escherichia coli components: Core RNA polymerase and the products of glnF, glnG and glnL. Proc Natl Acad Sci USA 82:8453–8357

    Google Scholar 

  • Kennell DE (1986) The instability of messenger RNA in bacteria. In: Reznikoff W, Gold L (eds) Maximizing gene expression. Butterworth Publishers, Boston, pp 101–142

    Google Scholar 

  • Kong Q-T, Wu Q-L, Ma Z-F, Shen S-C (1986) Oxygen sensitivity of the nifLA promoter of Klebsiella pneunoniae. J Bacteriol 166:353–356

    Google Scholar 

  • Kranz RG, Haselkorn R (1986) Anaerobic regulation of nitrogen fixation genes in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 83:6805–6809

    Google Scholar 

  • Kustu S, Sei K, Keener J (1986) Nitrogen regulation in enteric bacteria. In: Booth I, Higgins CF (eds) Regulation of gene expression — 25 years on. Cambridge University Press, Cambridge, pp 139–154

    Google Scholar 

  • Legocki RP, Yun AC, Szalay AA (1984) Expression of β-galactosidase controlled by a nitrogenase promoter in stem nodules of Aeschynomene scabra. Proc Natl Acad Sci USA 81:5806–5810

    Google Scholar 

  • Merrick M, Hill S, Hennecke H, Hahn M, Dixon R, Kennedy C (1982) Repressor properties of the nifL gene product in Klebsiella pneumoniae. Mol Gen Genet 185:75–81

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Ow DW, Ausubel FM (1983) Regulation of nitrogen metabolism by nifA gene product in Klebsiella pneumoniac. Nature 301:307–313

    Google Scholar 

  • Pawlowski K, Ratet P, Schell J, de Bruijn FJ (1987) Cloning and characterisation of nifA and ntrC genes of the stem nodulating bacterium ORS571, the nitrogen fixing symbiont of Sesbania rostrata: Regulation of nitrogen fixation (nif) genes in the free-living versus symbiotic state. Mol Gen Genet 206:207–219

    Google Scholar 

  • Postgate J (1974) Prerequisites for biological nitrogen fixation in free-living heterotrophic bacteria. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland Publishing Company, Amsterdam, pp 663–686

    Google Scholar 

  • Regensburger B, Hennecke H (1983) RNA polymerase from Rhizobium japonicum. Arch Microbiol 135:103–109

    Google Scholar 

  • Regensburger B, Meyer L, Filser M, Weber J, Studer D, Lamb JW, Fischer H-M, Hahn M, Hennecke H (1986) Bradyrhizobium japonicum mutants defective in root-nodule bacteriod development and nitrogen fixation. Arch Microbiol 144:355–366

    Google Scholar 

  • Roberts GP, MacNeil T, MacNeil D, Brill WJ (1978) Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J Bacteriol 136:267–279

    Google Scholar 

  • Schetgens R, Hontelez J, van den Bos R, van Kammen A (1985) Identification and phenotypical characterization of a cluster of fix genes, including a nif regulatory gene, from Rhizobium leguminosarum PRE. Mol Gen Genet 200:368–374

    Google Scholar 

  • Scott DB, Hennecke H, Lim ST (1979) The biosynthesis of nitrogenase MoFe protein polypeptides in free-living cultures of Rhizobium japonicum. Biochim Biophys Acta 565:365–378

    Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V, Ausubel FM (1984) A Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043

    Google Scholar 

  • Yamamoto N, Droffner ML (1985) Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc Natl Acad Sci USA 82:2077–2081

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Schell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, HM., Hennecke, H. Direct response of Bradyrhizobium japonicum nifA-mediated nif gene regulation to cellular oxygen status. Mol Gen Genet 209, 621–626 (1987). https://doi.org/10.1007/BF00331174

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331174

Key words

Navigation