Skip to main content
Log in

Transposon mutagenesis in Azospirillum brasilense: isolation of auxotrophic and Nif- mutants and molecular cloning of the mutagenized nifDNA

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We report the successful mutagenesis of Azospirillum brasilense 29710 Rif Sm with transposon Tn5. The narrow host-range plasmid pGS9 (p15A replicon), which possesses broad host-range N-type transfer genes, was used as the suicide vehicle to deliver Tn5 in Azospirillum. Out of 900 colonies tested, 0.8% proved to be auxotrophic. One mutant altered in indoleacetic acid (auxin) biosynthesis was isolated and, in addition, three mutants completely defective in nitrogen fixation (nif) were obtained. All the mutants tested contained a single copy of Tn5 integrated randomly in the genome. The Tn5-mutagenized EcoRI fragments were cloned from the three Nif- mutants. Physical analysis of cloned DNA showed that Tn5 was present on a different EcoRI fragment in each case, ranging in size from 15–17 kb. The nitrogenase structural genes (nifHDK) in A. brasilense 29710 Rif Sm were localized on a 6.7 kb EcoRI fragment. We found that Tn5 is not inserted in the nifHDK genes in the Nif- mutants reported here. Site-directed mutagenesis using the cloned, Tn5-containing DNA from mutant Nif27(pMS188), produced a large number of Nif- transconjugants of the A. brasilense 29710 Rif wild-type strain, showing the linkage between Tn5 insertion and the Nif- phenotype. This is the first time that transposon-mutagenized auxotrophic, Nif- and other mutants have been available for genetic analysis in Azospirillum. This should greatly facilitate the cloning and mapping of genes involved in nitrogen fixation as well as in many other phenotypic characteristics of Azospirillum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht SL, Okon Y (1980) Cultures of Azospirillum. Methods Enzymol 69:740–749

    Google Scholar 

  • Berg DE, Berg CM (1983) The prokaryotic transposable element Tn5. Bio/technology 1:417–435

    Google Scholar 

  • Berg DE, Davies J, Allet B, Rochaix JD (1975) Transposition of R factor genes of bacteriophage λ. Proc Natl Acad Sci USA 72:3628–3632

    Google Scholar 

  • Beringer JE, Beynon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634

    Google Scholar 

  • Boyer HW, Roullard-Dussoix D (1969) Complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Elmerich C (1983) Azospirillum genetics. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 367–372

    Google Scholar 

  • Ely B, Croft RH (1982) Transposon mutagenesis in Caulobacter crescentus. J Bacteriol 149:620–625

    Google Scholar 

  • Fahsold R, Singh M, Klingmüller W (1985) Cosmid cloning of the nitrogenase structural genes of Azospirillum lipoferum. In: Klingmüller W (ed) Azospirillum III: genetics physiology ecology. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 30–40

    Google Scholar 

  • Gauthier D, Elmerich C (1977) Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol Lett 2:101–104

    Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923

    Google Scholar 

  • Holliday R (1956) A new method for the identification of biochemical mutants of micro-organisms. Nature 178:987

    Google Scholar 

  • Humphreys GO, Willshaw GA, Anderson ES (1975) A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta 383:457–463

    Google Scholar 

  • Jara P, Quiviger B, Laurent P, Elmerich C (1983) Isolation and genetic analysis of Azospirillum brasilense Nif- mutants. Can J Microbiol 29:968–972

    Google Scholar 

  • Kennedy C, Cannon F, Cannon M, Dixon R, Hill S, Jensen J, Kumar S, McLean P, Merrick M, Robson R, Postgate J (1981) Recent advances in the genetics and regulation of nitrogen fixation. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Australian Academy of Sciences, Canberra, pp 146–156

    Google Scholar 

  • Kleckner N, Roth J, Botstein D (1977) Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol 166:125–159

    Google Scholar 

  • Leary JJ, Brigati J, Ward DC (1983) Rapid and sensitive colorimetric method for visualising biotin-labelled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci USA 80:4045–4049

    Google Scholar 

  • Maniatis T, Jeffrey A, Kleid DG (1975) Nucleotide sequence of the rightward operator of phage λ. Proc Natl Acad Sci USA 72:1184–1188

    Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    Google Scholar 

  • Meyers JA, Sanchez D, Elwell LP, Falkow S (1976) Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol 127: 1529–1537

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon FC (1979) Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282:533–535

    Google Scholar 

  • Okon Y (1984) The physiology of Azospirillum in relation to its utilization as inoculum for promoting growth of plants. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier, New York Amsterdam Oxford, pp 165–174

    Google Scholar 

  • Pedrosa FP, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nif A and ntrC (gln) type gene products. FEMS Microbiol Lett 23:95–101

    Google Scholar 

  • Perroud B, Bhandari SK, Elmerich C (1985) The nifHDK operon of Azospirillum brasilense. In: Klingmüller W (ed) Azospirillum III: genetics physiology ecology. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 10–19

    Google Scholar 

  • Quiviger B, Franche C, Lutfalla G, Rice D, Haselkorn R, Elmerich C (1982) Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense. Biochimie 64:495–502

    Google Scholar 

  • Rodriguez RL, Tait RC (1983) Recombinant DNA techniques: An introduction. Addison-Wesley Publishing House, London Amsterdam

    Google Scholar 

  • Ruvkun GB, Ausubel FM (1981) A general method for site-directed mutagenesis in prokaryotes. Nature 289:85–88

    Google Scholar 

  • Scott KF, Hughes JE, Gresshoff PM, Beringer JE, Rolfe BG, Shine J (1982) Molecular cloning of Rhizobium trifolii genes involved in symbiotic nitrogen fixation. J Mol Appl Genet 1:315–326

    Google Scholar 

  • Selvaraj G, Iyer VN (1983) Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 158:580–589

    Google Scholar 

  • Shaw KJ, Berg CM (1979). Escherichia coli K12 auxotrophs in duced by the insertion of the transposable element Tn5. Genetics 92:741–747

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host-range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram-negative bacteria. Bio/technology 1:784–791

    Google Scholar 

  • Singh M (1982) Transfer of bacteriophage Mu and transposon Tn5 into Azospirillum. In: Klingmüller W (ed) Azospirillum: genetics physiology ecology. Experientia Suppl, vol 42. Birkhäuser-Verlag, Basel, pp 35–43

    Google Scholar 

  • Singh M, Klingmüller W (1985a) Nif plasmids in free-living, nitrogen-fixing soil bacteria. In: Sinha U, Klingmüller W (eds) Trends in molecular genetics. Spectrum Publishing House, Patna Delhi, pp 15–34, in press

    Google Scholar 

  • Singh M, Klingmüller W (1985b) Problems and prospects of sitedirected transposon mutagenesis in Azospirillum. In: Klingmüller W (ed) Azospirillum III: genetics physiology ecology. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 20–29

    Google Scholar 

  • Singh M, Kleeberger A, Klingmüller W (1983) Location of nitrogen fixation (nif) genes on indigenous plasmids of Enterobacter agglomerans. Mol Gen Genet 190:373–378

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Google Scholar 

  • Turner P, Barber C, Daniels M (1984) Behaviour of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. Mol Gen Genet 195:101–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Böhme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Klingmüller, W. Transposon mutagenesis in Azospirillum brasilense: isolation of auxotrophic and Nif- mutants and molecular cloning of the mutagenized nifDNA. Mol Gen Genet 202, 136–142 (1986). https://doi.org/10.1007/BF00330530

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330530

Key words

Navigation