Skip to main content
Log in

The chloroplast genome of the green alga Chlamydomonas moewusii: Localization of protein-coding genes and transcriptionally active regions

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have recently reported the map positions of the ribosomal RNA genes and 6 protein-coding genes on the 292 kbp Chlamydomonas moewusii chloroplast genome. In the present study we localized 12 additional protein-coding genes on this green algal genome as well as 5 of these genes on the 196 kbp C. reinhardtii chloroplast genome. The gene mapping data agree with previous reports indicating that these two algal genomes differ tremendously in their global sequence organization and bear little similarity to their land plant counterparts. Among the 18 protein-coding genes examined, atpA and atpF of C. moewusii constitute the unique set of closely linked genes which is shared with land plant chloroplast genomes. The important gene order differences between the C. moewusii and C. reinhardtii chloroplast DNAs led us to speculate that gene grouping into transcription units is less prevalent in green algal chloroplast genomes than in their land plant homologs. To gain an insight into the transcriptional organization of the C. moewusii chloroplast genome, we probed Northern blots of total cellular RNA with clones covering 85% of this genome. Most chloroplast DNA regions were found to produce simple transcript patterns with RNAs less than 3.5 kb in size. This may be interpreted as indicating that Chlamydomonas chloroplast genes are transcribed mainly as monocistronic RNAs or that the RNAs observed are processed forms of unstable polycistronic transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J, Herrmann RG (1984) Nucleotide sequence of the gene for pre-apocytochrome f in the spinach plastid chromosome. Curr Genet 8:551–557

    Google Scholar 

  • Alt J, Morris J, Westhoff P, Herrmann RG (1984) Nucleotide sequence of the clustered genes for the 44 kd chlorophyll a apoprotein and the “32 kd”-like protein of the photosystem II reaction center in the spinach chloroplast genome. Curr Genet 8:597–606

    Google Scholar 

  • Cantrell A, Bryant DA (1987) Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol 9:453–468

    Google Scholar 

  • Cozens AL, Walker JE, Phillips AL, Huttly AK, Gray JC (1986) A sixth subunit of ATP synthase, and F0 component, is encoded in the pea chloroplast genome. EMBO J 5:217–222

    Google Scholar 

  • Crouse EJ, Schmitt JM, Bohnert H-J (1985) Chloroplast and cyanobacterial genomes, genes and RNAs: a compilation. Plant Mol Biol Rep 3:43–89

    Google Scholar 

  • Curtis SE (1986) Genes encoding the beta and epsilon subunits of the proton-translocating ATPase from Anabaena sp. strain PCC 7120. J Bacteriol 169:80–86

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Futai M, Kanazawa H (1983) Structure and function of protontranslocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev 47:285–312

    Google Scholar 

  • Grant DM, Gillham NW, Boynton JE (1980) Inheritance of chloroplast DNA in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 77:6067–6071

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiot hypothesis been proven? Microbiol Rev 46:1–42

    Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1988) In: O'Brien SJ (ed) Genetic Maps. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, in press

    Google Scholar 

  • Heinemeyer W, Alt J, Herrmann RG (1984) Nucleotide sequence of the clustered genes for apocytochrome b6 and subunit 4 of the cytochrome b/f complex in the spinach plastid genome. Curr Genet 8:543–549

    Google Scholar 

  • Hennig J, Herrmann RG (1986) Chloroplast ATP synthase of spinach contains nine nonidentical subunit species, six of which are encoded by plastid chromosomes in two operons in a phylogenetically conserved arragement. Mol Gen Genet 203:117–128

    Google Scholar 

  • Herrin DL, Michaels AS, Paul AL (1986) Regulation of genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase and the photosystem II polypeptides D-1 and D-2 during the cell cycle of Chlamydomonas reinhardtii. J Cell Biol 103:1837–1845

    Google Scholar 

  • Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) Nucleotide sequence of the gene for apocytochrome b-559 on the spinach plastid chromosome: implications for the structure of the membrane protein. FEBS Lett 176:239–244

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Nelson N (1985) Thylakoid membrane proteins and their genes. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 233–256

    Google Scholar 

  • Kirsch W, Seyer P, Herrmann RH (1986) Nucleotide sequence of the clustered genes for two P700 chlorophyll a apoproteins of the photosystem I reaction center and the ribosomal protein S 14 of the spinach plastid chromosome. Curr Genet 10:843–855

    Google Scholar 

  • Kössel H, Natt E, Strittmatter G, Fritzsche E, Gozdzicka-Jozefiak A, Przybyl D (1985) Structure and expression of rRNA operons from plastids of higher plants. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 183–198

    Google Scholar 

  • Kück U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardtii: evidence for in vivo trans-splicing. EMBO J 6:2185–2195

    Google Scholar 

  • Lemieux C, Lee RW (1987) Non reciprocal recombination between alleles of the chloroplast 23 S rRNA gene in interspecific Chlamydomonas crosses. Proc Natl Acad Sci USA 84:4166–4170

    Google Scholar 

  • Lemieux B, Lemieux C (1985) Extensive sequence rearrangements in the chloroplast genomes of the green algae Chlamydomonas eugametos and Chlamydomonas reinhardtii. Curr Genet 10:213–219

    Google Scholar 

  • Lemieux C, Turmel M, Lee RW (1980) Characterization of chloroplast DNA in Chlamydomonas eugametos and C. moewusii and its inheritance in hybrid progeny. Curr Genet 2:139–147

    Google Scholar 

  • Lemieux C, Turmel M, Seligy VL, Lee RW (1984) Chloroplast DNA recombination in interspecific hybrids of Chlamydomonas: linkage between a nonmendelian locus for streptomycin resistance and restriction fragments coding for 16 S rRNA. Proc Natl Acad Sci USA 81:1164–1168

    Google Scholar 

  • Lemieux C, Turmel M, Seligy VL, Lee RW (1985) The large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase is encoded in the inverted repeat sequence of the Chlamydomonas eugametos chloroplast genome. Curr Genet 9:139–145

    Google Scholar 

  • Lemieux B, Turmel M, Lemieux C (1988) Unidirectional gene conversions in the chloroplast of Chlamydomonas interspecific hybrids. Mol Gen Genet 212:48–55

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 109–112

    Google Scholar 

  • Matsuda Y, Surzycki SJ (1980) Chloroplast gene expression in Chlamydomonas reinhardtii. Mol Gen Genet 180:463–474

    Google Scholar 

  • McMaster GK, Carmichael GG (1977) Analysis of single- and double-stranded nucleic acids in polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • Morris J, Herrmann RG (1984) Nucleotide sequence of the gene for the P680 chlorophyll a apoprotein of the photosystem II reaction center from spinach. Nucleic Acids Res 12:2837–2850

    Google Scholar 

  • Palmer JD (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum Press, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1985b) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354

    Google Scholar 

  • Rochaix J-D (1978) Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardtii. J Mol Biol 126:597–617

    Google Scholar 

  • Rochaix J-D (1981) Organization, function and expression of the chloroplast DNA of Chlamydomonas reinhardtii. Experientia 37:323–332

    Google Scholar 

  • Rochaix J-D (1987) Molecular genetics of chloroplasts and mitochondria in the unicellular green alga Chlamydomonas. FEMS Microbiol Rev 46:13–34

    Google Scholar 

  • Rochaix J-D, Malnoë P (1978) Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardtii. Cell 15:661–670

    Google Scholar 

  • Rochaix J-D, Malnoë P (1982) Use of DNA-RNA hybridizations for locating chloroplast genes and for estimating the size and abundance of chloroplast DNA transcripts. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, pp 477–490

    Google Scholar 

  • Schmidt RJ, Hosler JP, Gillham NW, Boynton JE (1985) Biogenesis and evolution of chloroplast ribosomes: cooperation of nuclear and chloroplast genes. In: Arentzen CJ, Bogorad L, Bonitz S, Steinback KE, (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 417–427

    Google Scholar 

  • Sijben-Müller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase α-subunit. Nucleic Acids Res 14:1029–1044

    Google Scholar 

  • Strittmatter G, Kössel H (1984) Cotranscription and processing of 23 S, 4.5 S and 5 S rRNA in chloroplasts from Zea mays. Nucleic Acids Res 12:7633–7647

    Google Scholar 

  • Tanaka M, Tatsuya W, Sugita M, Shinozaki K, Sugiura M (1986) Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S 10 and spc operons of Escherichia coli. Proc Natl Acad Sci USA 83:6030–6034

    Google Scholar 

  • Tanaka M, Obokata J, Chunwongse J, Shinozaki K, Sugiura M (1987) Rapid splicing and stepwise processing of a transcript from the psbB operon in tobacco chloroplasts: determination of the intron sites in petB and petD. Mol Gen Genet 209:427–431

    Google Scholar 

  • Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205

    Google Scholar 

  • Turmel M, Bellemare G, Lemieux C (1987) Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusii. Curr Genet 11:543–552

    Google Scholar 

  • Watson JC, Surzycki SJ (1982) Extensive sequence homology in the DNA coding for elongation factor Tu from E. coli and the C. reinhardtii chloroplast. Proc Natl Acad Sci USA 79:2264–2268

    Google Scholar 

  • Westhoff P, Herrmann RG (1988) Complex RNA maturation in chloroplasts. Eur J Biochem 171:551–564

    Google Scholar 

  • Westhoff P, Alt J, Nelson N, Herrmann RG (1985) Genes and transcripts for the ATP synthase CF0 subunits I and II from spinach thylakoid membranes. Mol Gen Genet 199:290–299

    Google Scholar 

  • Westhoff P, Farchaus JW, Herrmann RG (1986) The gene for the Mr 10000 photoprotein associated with photosystem II is part of the psbB operon of the spinach plastid chromosome. Curr Genet 11:165–169

    Google Scholar 

  • Whatley JM (1983) Plastids — past, present, and future. Int Rev Cyt [Suppl] 14:329–373

    Google Scholar 

  • Woessner JP, Masson A, Harris EH, Bennoun P, Gillham NW, Boynton JE (1984) Molecular and genetic analysis of the chloroplast ATPase of Chlamydomonas. Plant Mol Biol 3:177–190

    Google Scholar 

  • Woessner JP, Gillham NW, Boynton JE (1986) Chloroplast genes encoding subunits of the H+-ATPase complex of Chlamydomonas reinhardtii are rearranged compared to higher plants: sequence of the atpE gene and location of the atpF and atpI genes. Plant Mol Biol 8:151–158

    Google Scholar 

  • Yamada T, Shimaji M (1987) Splitting of the ribosomal RNA operon on chloroplast DNA from Chlorella ellipsoidea. Mol Gen Genet 208:377–383

    Google Scholar 

  • Yamada T, Shimaji M, Fukuda Y (1986) Characterization of a chloroplast DNA sequence from Chlorella ellipsoidea that promotes autonomous replication in yeast. Plant Mol Biol 6:245–252

    Google Scholar 

  • Yan RCA, Dove M, Seligy VL, Lemieux C, Turmel M, Narang SA (1986) Complete nucleotide sequence and mRNA-mapping of the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) from Chlamydomonas moewusii. Gene 50:259–270

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982) Structures of the genes for the β and ε subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA 79:6260–6264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R.G. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turmel, M., Lemieux, B. & Lemieux, C. The chloroplast genome of the green alga Chlamydomonas moewusii: Localization of protein-coding genes and transcriptionally active regions. Mol Gen Genet 214, 412–419 (1988). https://doi.org/10.1007/BF00330474

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330474

Key words

Navigation